Zobrazit minimální záznam

dc.contributor.authorKalita, Kanak
dc.contributor.authorGhadai, Ranjan Kumar
dc.contributor.authorČepová, Lenka
dc.contributor.authorShivakoti, Ishwer
dc.contributor.authorBhoi, Akash Kumar
dc.date.accessioned2020-10-06T09:27:00Z
dc.date.available2020-10-06T09:27:00Z
dc.date.issued2020
dc.identifier.citationMaterials. 2020, vol. 13, issue 14, art. no. 3047.cs
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/10084/142268
dc.description.abstractIn this article, an improved variant of the cuckoo search (CS) algorithm named Coevolutionary Host-Parasite (CHP) is used for maximizing the metal removal rate in a turning process. The spindle speed, feed rate and depth of cut are considered as the independent parameters that describe the metal removal rate during the turning operation. A data-driven second-order polynomial regression approach is used for this purpose. The training dataset is designed using an L16 orthogonal array. The CHP algorithm is effective in quickly locating the global optima. Furthermore, CHP is seen to be sufficiently robust in the sense that it is able to identify the optima on independent reruns. The CHP predicted optimal solution presents +/- 10% deviations in the optimal process parameters, which shows the robustness of the optimal solution.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMaterialscs
dc.relation.urihttp://doi.org/10.3390/ma13143047cs
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectregression analysiscs
dc.subjectmaterial removal rate (MRR)cs
dc.subjectcuckoo searchcs
dc.subjectoptimizationcs
dc.titleMemetic cuckoo-search-based optimization in machining galvanized ironcs
dc.typearticlecs
dc.identifier.doi10.3390/ma13143047
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue14cs
dc.description.firstpageart. no. 3047cs
dc.identifier.wos000558084900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.