Multiswarm Multiobjective Particle Swarm Optimization with Simulated Annealing for extracting multiple tests
dc.contributor.author | Bui, Toan | |
dc.contributor.author | Nguyen, Tram | |
dc.contributor.author | Huynh, Huy M. | |
dc.contributor.author | Vo, Bay | |
dc.contributor.author | Chun-Wei Lin, Jerry | |
dc.contributor.author | Hong, Tzung-Pei | |
dc.date.accessioned | 2020-10-19T10:03:07Z | |
dc.date.available | 2020-10-19T10:03:07Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Scientific Programming. 2020, vol. 2020, art. no. 7081653. | cs |
dc.identifier.issn | 1058-9244 | |
dc.identifier.issn | 1875-919X | |
dc.identifier.uri | http://hdl.handle.net/10084/142335 | |
dc.description.abstract | Education is mandatory, and much research has been invested in this sector. An important aspect of education is how to evaluate the learners' progress. Multiple-choice tests are widely used for this purpose. The tests for learners in the same exam should come in equal difficulties for fair judgment. Thus, this requirement leads to the problem of generating tests with equal difficulties, which is also known as the specific case of generating tests with a single objective. However, in practice, multiple requirements (objectives) are enforced while making tests. For example, teachers may require the generated tests to have the same difficulty and the same test duration. In this paper, we propose the use of Multiswarm Multiobjective Particle Swarm Optimization (MMPSO) for generating k tests with multiple objectives in a single run. Additionally, we also incorporate Simulated Annealing (SA) to improve the diversity of tests and the accuracy of solutions. The experimental results with various criteria show that our approaches are effective and efficient for the problem of generating multiple tests. | cs |
dc.language.iso | en | cs |
dc.publisher | Hindawi | cs |
dc.relation.ispartofseries | Scientific Programming | cs |
dc.relation.uri | http://doi.org/10.1155/2020/7081653 | cs |
dc.rights | Copyright © 2020 Toan Bui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.title | Multiswarm Multiobjective Particle Swarm Optimization with Simulated Annealing for extracting multiple tests | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1155/2020/7081653 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 2020 | cs |
dc.description.firstpage | art. no. 7081653 | cs |
dc.identifier.wos | 000561366100009 |
Files in this item
This item appears in the following Collection(s)
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost.
Except where otherwise noted, this item's license is described as Copyright © 2020 Toan Bui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.