Zobrazit minimální záznam

dc.contributor.authorAxelsson, Owe
dc.contributor.authorLiang, Zhao-Zheng
dc.contributor.authorKružík, Jakub
dc.contributor.authorHorák, David
dc.date.accessioned2020-11-10T08:28:33Z
dc.date.available2020-11-10T08:28:33Z
dc.date.issued2021
dc.identifier.citationJournal of Computational and Applied Mathematics. 2021, vol. 383, art. no. 113117.cs
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.urihttp://hdl.handle.net/10084/142388
dc.description.abstractLarge scale systems of algebraic equations are frequently solved by iterative solution methods, such as the conjugate gradient method for symmetric or a generalized conjugate gradient or generalized minimum residual method for nonsymmetric linear systems. In practice, to get an acceptable elapsed computing time when solving large scale problems, one shall use parallel computer platforms. However, such methods involve orthogonalization of search vectors which requires computation of many inner products and, hence, needs global communication of data, which will be costly in computer times. In this paper, we propose various inner product free methods, such as the Chebyshev acceleration method. We study the solution of linear systems arising from optimal control problems for PDEs, such as the edge element discretization of the time-periodic eddy current optimal control problem. Following a discretize-then-optimize scheme, the resulting linear system is of a three-by-three block matrix form. Various solution methods based on an approximate Schur complement and inner product free iterative solution methods for this linear system are analyzed and compared with an earlier used method for two-by-two block matrices with square blocks. The convergence properties and implementation details of the proposed methods are analyzed to show their effectiveness and practicality. Both serial and parallel numerical experiments are presented to further investigate the performance of the proposed methods compared with some other existing methods.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Computational and Applied Mathematicscs
dc.relation.urihttp://doi.org/10.1016/j.cam.2020.113117cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectPDE-constrained optimizationcs
dc.subjectiterative solutioncs
dc.subjectpreconditioningcs
dc.subjectglobal communicationcs
dc.subjectinner product freecs
dc.subjectparallel efficiencycs
dc.titleInner product free iterative solution and elimination methods for linear systems of a three-by-three block matrix formcs
dc.typearticlecs
dc.identifier.doi10.1016/j.cam.2020.113117
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume383cs
dc.description.firstpageart. no. 113117cs
dc.identifier.wos000574895400017


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam