Zobrazit minimální záznam

dc.contributor.authorBiswas, Biswajit
dc.contributor.authorBhattacharyya, Siddhartha
dc.contributor.authorChakrabarti, Amlan
dc.contributor.authorDey, Kashi Nath
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2020-11-13T10:00:01Z
dc.date.available2020-11-13T10:00:01Z
dc.date.issued2020
dc.identifier.citationApplied Soft Computing. 2020, vol. 95, art. no. 106492.cs
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.urihttp://hdl.handle.net/10084/142408
dc.description.abstractMedical images often suffer from low contrast, irregular gray-level spacing and contain a lot of uncertainties due to constraints of imaging devices and environment (various lighting conditions) when capturing images. In order to achieve any clinical-diagnosis method for medical imaging with better comprehensibility, image contrast enhancement algorithms would be appropriate to improve the visual quality of medical images. In this paper, an automated image enhancement method is presented for colonoscopy images based on the intuitionistic fuzzy soft set. The fuzzy soft set is used to model the intuitionistic fuzzy soft image matrix based on a set of soft features of the colonoscopy images. The technique decomposes the fuzzy image into multiple blocks and estimates a soft-score based on an adaptive soft parametric hesitancy map by using the hesitant entropy for each block to quantify the uncertainties. In the processing stage, an adaptive intensity modification process is done for each block according to its soft-score. These scores are accurately addressed the gray-level ambiguities in colonoscopy images that lead to better results. Finally, the enhanced image achieved by performing a defuzzification together with all unprocessed blocks. Qualitative and quantitative assessments demonstrate that the proposed method improves image contrast and region-of-interest of polyps in colonogram. Experimental results on enhancing a large CVC-Clinic-DB and ASU-Mayo clinic colonoscopy benchmark datasets show that the proposed method outperforms the state-of-the-art medical image enhancement methods.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Soft Computingcs
dc.relation.urihttp://doi.org/10.1016/j.asoc.2020.106492cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectvisual enhancementcs
dc.subjectcolonoscopy imagecs
dc.subjectpolyp cancercs
dc.subjectfuzzy setcs
dc.subjectintuitionistic fuzzy setcs
dc.subjectfuzzy soft setcs
dc.subjectfuzzy entropycs
dc.titleColonoscopy contrast-enhanced by intuitionistic fuzzy soft sets for polyp cancer localizationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.asoc.2020.106492
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume95cs
dc.description.firstpageart. no. 106492cs
dc.identifier.wos000576775900016


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam