Zobrazit minimální záznam

dc.contributor.authorKrömer, Pavel
dc.contributor.authorHasal, Martin
dc.contributor.authorNowaková, Jana
dc.contributor.authorHeckenbergerová, Jana
dc.contributor.authorMusilek, Petr
dc.date.accessioned2021-01-11T06:58:51Z
dc.date.available2021-01-11T06:58:51Z
dc.date.issued2020
dc.identifier.citationIEEE Intelligent Transportation Systems Magazine. 2020, vol. 12, issue 4, p. 182-194.cs
dc.identifier.issn1939-1390
dc.identifier.issn1941-1197
dc.identifier.urihttp://hdl.handle.net/10084/142546
dc.description.abstractThe representation, visualization, and modeling of traffic data is at the heart of intelligent transportation systems. Different types of traffic data exist, and novel ways of their accurate representation and modeling, which are useful for further analyses, simulations, and optimizations, are sought. In this work, location-specific traffic flows are represented by finite mixtures of circular normal (von Mises) statistical distributions. The parameters of the distributions are learned from empirical data by two variants of the expectation-maximization (EM) algorithm and by a nature-inspired method, differential evolution (DE). A proposed statistical model and a fitting strategy are evaluated on real-world data sets describing traffic flows in New York City. The experimental results show that the EM algorithm is able to find model parameters that correspond to input data and that are better than their analytic estimates, while DE evolves even more accurate models. The models based on circular distributions can be represented by circular plots as a novel type of visually appealing and easily interpretable fingerprints of the underlying traffic flow patterns.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Intelligent Transportation Systems Magazinecs
dc.relation.urihttp://doi.org/10.1109/MITS.2020.3014419cs
dc.rightsCopyright © 2020, IEEEcs
dc.subjectdata modelscs
dc.subjectanalytical modelscs
dc.subjecttraffic controlcs
dc.subjectautonomous vehiclescs
dc.subjectmachine learningcs
dc.subjectvisualizationcs
dc.titleStatistical and nature-inspired modeling of vehicle flows by using finite mixtures of simple circular normal distributionscs
dc.typearticlecs
dc.identifier.doi10.1109/MITS.2020.3014419
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue4cs
dc.description.lastpage194cs
dc.description.firstpage182cs
dc.identifier.wos000584607700014


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam