Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models
dc.contributor.author | Giacometti, Rosella | |
dc.contributor.author | Torri, Gabriele | |
dc.contributor.author | Paterlini, S. | |
dc.date.accessioned | 2021-01-11T09:12:19Z | |
dc.date.available | 2021-01-11T09:12:19Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Quantitative Finance. 2020. | cs |
dc.identifier.issn | 1469-7688 | |
dc.identifier.issn | 1469-7696 | |
dc.identifier.uri | http://hdl.handle.net/10084/142549 | |
dc.description.abstract | Accurate estimation and optimal control of tail risk is important for building portfolios with desirable properties, especially when dealing with a large set of assets. In this work, we consider optimal asset allocation strategies based on the minimization of two asymmetric deviation measures, related to quantile and expectile regression, respectively. Their properties are discussed in relation with the 'risk quadrangle' framework introduced by Rockafellar and Uryasev [The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci., 2013, 18(1-2), 33-53], and compared to traditional strategies, such as the mean-variance portfolio. In order to control estimation error and improve the out-of-sample performance of the proposed models, we include ridge and elastic-net regularization penalties. Finally, we propose quadratic programming formulations for the optimization problems. Simulations and real-world analyses on multiple datasets allow to discuss pros and cons of the different methods. The results show that the ridge and elastic-net allocations are effective in improving the out-of-sample performance, especially in large portfolios, compared to the un-penalized ones. | cs |
dc.language.iso | en | cs |
dc.publisher | Taylor & Francis | cs |
dc.relation.ispartofseries | Quantitative Finance | cs |
dc.relation.uri | http://doi.org/10.1080/14697688.2020.1820072 | cs |
dc.rights | Rights managed by Taylor & Francis | cs |
dc.subject | tail risk | cs |
dc.subject | expectiles | cs |
dc.subject | quantiles | cs |
dc.subject | regularization | cs |
dc.subject | portfolio optimization | cs |
dc.title | Tail risks in large portfolio selection: penalized quantile and expectile minimum deviation models | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1080/14697688.2020.1820072 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.identifier.wos | 000584838300001 |
Soubory tohoto záznamu
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Publikační činnost Katedry financí / Publications of Department of Finance (154) [159]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry financí (154) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor.