Zobrazit minimální záznam

dc.contributor.authorVáclavík, Vojtěch
dc.contributor.authorOndová, Marcela
dc.contributor.authorDvorský, Tomáš
dc.contributor.authorEštoková, Adriana
dc.contributor.authorFabiánová, Martina
dc.contributor.authorGola, Lukáš
dc.date.accessioned2021-02-12T09:27:38Z
dc.date.available2021-02-12T09:27:38Z
dc.date.issued2020
dc.identifier.citationSustainability. 2020, vol. 12, issue 23, art. no. 9873.cs
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/10084/142823
dc.description.abstractSustainability in the construction industry refers to all resource-efficient and environmentally responsible processes throughout the life cycle of a structure. Green buildings may incorporate reused, recycled, or recovered materials in their construction. Concrete is as an important building material. Due to the implementation of by-products and waste from various industries into its structure, concrete represents a significant sustainable material. Steel slag has great potential for its reuse in concrete production. Despite its volume changes over time, steel slag can be applied in concrete as a cement replacement (normally) or as a substitute for natural aggregates (rarely). This paper focused on an investigation of concrete with steel slag as a substitute of natural gravel aggregate. Testing physical and mechanical properties of nontraditional concrete with steel slag as a substitute for natural aggregates of 4/8 mm and 8/16 mm fractions confirmed the possibility of using slag as a partial replacement of natural aggregate. Several samples of concrete with steel slag achieved even better mechanical parameters (e.g., compressive strength, frost resistance) than samples with natural aggregate. Moreover, a life cycle assessment (LCA) was performed within the system boundaries cradle-to-gate. The LCA results showed that replacements of natural aggregates significantly affected the utilization rate of nonrenewable raw materials and reduced the overall negative impacts of concrete on the environment up to 7%. The sustainability indicators (SUI), which considered the LCA data together with the technical parameters of concrete, were set to evaluate sustainability of the analyzed concretes. Based on the SUI results, replacing only one fraction of natural gravel aggregate in concrete was a more sustainable solution than replacing both fractions at once. These results confirmed the benefits of using waste to produce sustainable materials in construction industry.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSustainabilitycs
dc.relation.urihttp://doi.org/10.3390/su12239873cs
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectsteel slagcs
dc.subjectnatural aggregatescs
dc.subjectsustainabilitycs
dc.titleSustainability potential evaluation of concrete with steel slag aggregates by the LCA methodcs
dc.typearticlecs
dc.identifier.doi10.3390/su12239873
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue23cs
dc.description.firstpageart. no. 9873cs
dc.identifier.wos000597464700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.