Zobrazit minimální záznam

dc.contributor.authorEl-Sappagh, Shaker
dc.contributor.authorSaleh, Hager
dc.contributor.authorSahal, Radhya
dc.contributor.authorAbuhmed, Tamer
dc.contributor.authorIslam, S. M. Riazul
dc.contributor.authorAli, Farman
dc.contributor.authorAmer, Eslam
dc.date.accessioned2021-03-05T08:26:29Z
dc.date.available2021-03-05T08:26:29Z
dc.date.issued2021
dc.identifier.citationFuture Generation Computer Systems. 2021, vol. 115, p. 680-699.cs
dc.identifier.issn0167-739X
dc.identifier.issn1872-7115
dc.identifier.urihttp://hdl.handle.net/10084/142919
dc.description.abstractAlzheimer’s disease (AD) is a severe neurodegenerative disease. The identification of patients at high risk of conversion from mild cognitive impairment to AD via earlier close monitoring, targeted investigations, and appropriate management is crucial. Recently, several machine learning (ML) algorithms have been used for AD progression detection. Most of these studies only utilized neuroimaging data from baseline visits. However, AD is a complex chronic disease, and usually, a medical expert will analyze the patient’s whole history when making a progression diagnosis. Furthermore, neuroimaging data are always either limited or not available, especially in developing countries, due to their cost. In this paper, we compare the performance of five widely used ML algorithms, namely, the support vector machine, random forest, k-nearest neighbor, logistic regression, and decision tree to predict AD progression with a prediction horizon of 2.5 years. We use 1029 subjects from the Alzheimer’s disease neuroimaging initiative (ADNI) database. In contrast to previous literature, our models are optimized using a collection of cost-effective time-series features including patient’s comorbidities, cognitive scores, medication history, and demographics. Medication and comorbidity text data are semantically prepared. Drug terms are collected and cleaned before encoding using the therapeutic chemical classification (ATC) ontology, and then semantically aggregated to the appropriate level of granularity using ATC to ensure a less sparse dataset. Our experiments assert that the early fusion of comorbidity and medication features with other features reveals significant predictive power with all models. The random forest model achieves the most accurate performance compared to other models. This study is the first of its kind to investigate the role of such multimodal time-series data on AD prediction.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesFuture Generation Computer Systemscs
dc.relation.urihttp://doi.org/10.1016/j.future.2020.10.005cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectAlzheimer diseasecs
dc.subjectmachine learningcs
dc.subjectmultimodal data analysiscs
dc.subjectdisease progression detectioncs
dc.titleAlzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal datacs
dc.typearticlecs
dc.identifier.doi10.1016/j.future.2020.10.005
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume115cs
dc.description.lastpage699cs
dc.description.firstpage680cs
dc.identifier.wos000592029600009


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam