Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data
dc.contributor.author | El-Sappagh, Shaker | |
dc.contributor.author | Saleh, Hager | |
dc.contributor.author | Sahal, Radhya | |
dc.contributor.author | Abuhmed, Tamer | |
dc.contributor.author | Islam, S. M. Riazul | |
dc.contributor.author | Ali, Farman | |
dc.contributor.author | Amer, Eslam | |
dc.date.accessioned | 2021-03-05T08:26:29Z | |
dc.date.available | 2021-03-05T08:26:29Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Future Generation Computer Systems. 2021, vol. 115, p. 680-699. | cs |
dc.identifier.issn | 0167-739X | |
dc.identifier.issn | 1872-7115 | |
dc.identifier.uri | http://hdl.handle.net/10084/142919 | |
dc.description.abstract | Alzheimer’s disease (AD) is a severe neurodegenerative disease. The identification of patients at high risk of conversion from mild cognitive impairment to AD via earlier close monitoring, targeted investigations, and appropriate management is crucial. Recently, several machine learning (ML) algorithms have been used for AD progression detection. Most of these studies only utilized neuroimaging data from baseline visits. However, AD is a complex chronic disease, and usually, a medical expert will analyze the patient’s whole history when making a progression diagnosis. Furthermore, neuroimaging data are always either limited or not available, especially in developing countries, due to their cost. In this paper, we compare the performance of five widely used ML algorithms, namely, the support vector machine, random forest, k-nearest neighbor, logistic regression, and decision tree to predict AD progression with a prediction horizon of 2.5 years. We use 1029 subjects from the Alzheimer’s disease neuroimaging initiative (ADNI) database. In contrast to previous literature, our models are optimized using a collection of cost-effective time-series features including patient’s comorbidities, cognitive scores, medication history, and demographics. Medication and comorbidity text data are semantically prepared. Drug terms are collected and cleaned before encoding using the therapeutic chemical classification (ATC) ontology, and then semantically aggregated to the appropriate level of granularity using ATC to ensure a less sparse dataset. Our experiments assert that the early fusion of comorbidity and medication features with other features reveals significant predictive power with all models. The random forest model achieves the most accurate performance compared to other models. This study is the first of its kind to investigate the role of such multimodal time-series data on AD prediction. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Future Generation Computer Systems | cs |
dc.relation.uri | http://doi.org/10.1016/j.future.2020.10.005 | cs |
dc.rights | © 2020 Elsevier B.V. All rights reserved. | cs |
dc.subject | Alzheimer disease | cs |
dc.subject | machine learning | cs |
dc.subject | multimodal data analysis | cs |
dc.subject | disease progression detection | cs |
dc.title | Alzheimer’s disease progression detection model based on an early fusion of cost-effective multimodal data | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.future.2020.10.005 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 115 | cs |
dc.description.lastpage | 699 | cs |
dc.description.firstpage | 680 | cs |
dc.identifier.wos | 000592029600009 |
Soubory tohoto záznamu
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor.