Zobrazit minimální záznam

dc.contributor.authorNguyen, Tram
dc.contributor.authorNguyen, Loan T. T.
dc.contributor.authorBui, Toan
dc.contributor.authorLoc, Ho Dac
dc.contributor.authorPedrycz, Witold
dc.contributor.authorSnášel, Václav
dc.contributor.authorVo, Bay
dc.date.accessioned2021-03-29T09:48:37Z
dc.date.available2021-03-29T09:48:37Z
dc.date.issued2021
dc.identifier.citationIEEE Access. 2021, vol. 9, p. 32131-32148.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/142999
dc.description.abstractIn this study, a novel method for generating multiple-choice tests is presented, which extracts the required number of tests of the same levels of difficulty in a single attempt and approximates the difficulty level requirement given by users. We propose an approach using parallelism and Pareto optimization for multi-swarm migration in a particle swarm optimization (PSO) algorithm. Multi-PSO is proposed for shortening the computing time. The proposed migration of PSOs increases the diversity of tests and controls the overlap of extracted tests. The experimental results show that the proposed method can generate many tests from question banks satisfying predefined levels of difficulty. Additionally, the developed method is shown to be effective in terms of many criteria when compared with other methods such as manually extracted tests, a simulated annealing algorithm (SA), random methods and PSO-based approaches in terms of the number of successful solutions, accuracy, standard deviation, search speed, and the number of questions overlapping between the exam questions, as well as for changing the search space, changing the number of individuals, changing the number of swarms, and changing the difficulty requirements.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttp://doi.org/10.1109/ACCESS.2021.3057515cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmultiple-choice testscs
dc.subjectmulti-swarm optimizationcs
dc.subjectmulti-objective optimizationcs
dc.subjectparallelismcs
dc.titleMulti-swarm optimization for extracting multiple-choice tests from question bankscs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2021.3057515
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.lastpage32148cs
dc.description.firstpage32131cs
dc.identifier.wos000623414400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/