Zobrazit minimální záznam

dc.contributor.authorFuoco, Alessio
dc.contributor.authorSatilmis, Bekir
dc.contributor.authorUyar, Tamer
dc.contributor.authorMonteleone, Marcello
dc.contributor.authorEsposito, Elisa
dc.contributor.authorMuzzi, Chiara
dc.contributor.authorTocci, Elena
dc.contributor.authorLongo, Mariagiulia
dc.contributor.authorDe Santo, Maria Penelope
dc.contributor.authorLanč, Marek
dc.contributor.authorFriess, Karel
dc.contributor.authorVopička, Ondřej
dc.contributor.authorIzák, Pavel
dc.contributor.authorJansen, Johannes C.
dc.date.accessioned2021-05-07T08:32:18Z
dc.date.available2021-05-07T08:32:18Z
dc.date.issued2020
dc.identifier.citationJournal of Membrane Science. 2020, vol. 594, art. no. 117460.cs
dc.identifier.issn0376-7388
dc.identifier.issn1873-3123
dc.identifier.urihttp://hdl.handle.net/10084/143060
dc.description.abstractThis manuscript describes the gas separation performance of PIM-2, a partially fluorinated linear copolymer synthesized from 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane (TTSBI) and decafluorobiphenyl (DFBP). As one of the early members of the family of polymers of intrinsic microporosity, it had never been tested as a gas separation membrane because of insufficient mechanical resistance. This has been solved only recently, allowing the preparation of robust self-standing films. Molecular modelling studies demonstrated a high fractional free volume (34%) and an elevated surface area (642 m(2) g(-1)), and the latter is in good agreement with experimental BET results. Pure gas permeabilities measured on a fixed-volume time-lag instrument at 1 bar compare well with the results of mixed separation tests on a variable volume setup from 1-6 bar(a). Molecular modelling and independent sorption measurements on a gravimetric sorption balance both show strong dual-mode sorption behaviour, especially for CO2 and to a lesser extent for CH4. Temperature-dependent pure gas permeation measurements show typical Arrhenius behaviour, with a clear increase in the activation energy for diffusion with the increasing molecular size of the gas, indicating high size-selectivity. This is in agreement with the highly rigid PIM structure, determined by AFM force spectroscopy measurements. The dual-mode behaviour results in a moderate pressure dependence of the CO2 permeability and the CO2/N-2 and CO2/CH4 selectivity, all slightly decreasing with increasing pressure. The presence of humidity in the gas stream has a remarkable small effect on the membrane performance, which is probably due to the high fluorine content and the consequently low water vapour solubility in the polymer, as confirmed by gravimetric sorption measurements. The manuscript describes an extensive study on the structure-property relationships in PIM-2.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Membrane Sciencecs
dc.relation.urihttp://doi.org/10.1016/j.memsci.2019.117460cs
dc.rights© 2019 Elsevier B.V. All rights reserved.cs
dc.subjectpolymer of intrinsic microporositycs
dc.subjectgas separation membranecs
dc.subjecthumid gas permeationcs
dc.subjectcarbon capturecs
dc.subjectmolecular modellingcs
dc.titleComparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modellingcs
dc.typearticlecs
dc.identifier.doi10.1016/j.memsci.2019.117460
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume594cs
dc.description.firstpageart. no. 117460cs
dc.identifier.wos000495572700018


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam