Zobrazit minimální záznam

dc.contributor.authorBobková, Michaela
dc.contributor.authorPospíšil, Lukáš
dc.date.accessioned2021-05-25T09:10:29Z
dc.date.available2021-05-25T09:10:29Z
dc.date.issued2021
dc.identifier.citationMathematics. 2021, vol. 9, issue 8, art. no. 898.cs
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10084/143077
dc.description.abstractWe are interested in a contact problem for a thin fixed beam with an internal point obstacle with possible rotation and shift depending on a given swivel and sliding friction. This problem belongs to the most basic practical problems in, for instance, the contact mechanics in the sustainable building construction design. The analysis and the practical solution plays a crucial role in the process and cannot be ignored. In this paper, we consider the classical Euler-Bernoulli beam model, which we formulate, analyze, and numerically solve. The objective function of the corresponding optimization problem for finding the coefficients in the finite element basis combines a quadratic function and an additional non-differentiable part with absolute values representing the influence of considered friction. We present two basic algorithms for the solution: the regularized primal solution, where the non-differentiable part is approximated, and the dual formulation. We discuss the disadvantages of the methods on the solution of the academic benchmarks.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMathematicscs
dc.relation.urihttps://doi.org/10.3390/math9080898cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbending of a beamcs
dc.subjectfinite element methodcs
dc.subjectsobolev spacescs
dc.subjectlinear elasticitycs
dc.subjectdualitycs
dc.titleNumerical solution of bending of the beam with given frictioncs
dc.typearticlecs
dc.identifier.doi10.3390/math9080898
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue8cs
dc.description.firstpageart. no. 898cs
dc.identifier.wos000644530400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.