dc.contributor.author | Danca, Marius-F. | |
dc.contributor.author | Lampart, Marek | |
dc.date.accessioned | 2021-06-25T10:14:28Z | |
dc.date.available | 2021-06-25T10:14:28Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Chaos, Solitons & Fractals. 2021, vol. 142, art. no. 110371. | cs |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.uri | http://hdl.handle.net/10084/143127 | |
dc.description.abstract | In this paper it is numerically shown that the dynamics of a heterogeneous Cournot oligopoly model depending on two bifurcation parameters can exhibit hidden and self-excited attractors. The system has a single equilibrium and a line of equilibria. The bifurcation diagrams show that the system admits several attractor coexistence windows, where the hidden attractors can be found. Depending on the parameters ranges, the coexistence windows present combinations of periodic, quasiperiodic and chaotic attractors. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Chaos, Solitons & Fractals | cs |
dc.relation.uri | https://doi.org/10.1016/j.chaos.2020.110371 | cs |
dc.rights | © 2020 Elsevier Ltd. All rights reserved. | cs |
dc.subject | hidden attractor | cs |
dc.subject | self-excited attractor | cs |
dc.subject | Cournot oligopoly model | cs |
dc.title | Hidden and self-excited attractors in a heterogeneous Cournot oligopoly model | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.chaos.2020.110371 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 142 | cs |
dc.description.firstpage | art. no. 110371 | cs |
dc.identifier.wos | 000629622200013 | |