Zobrazit minimální záznam

dc.contributor.authorMa, Chunrong
dc.contributor.authorHou, Yang
dc.contributor.authorJiang, Kai
dc.contributor.authorZhao, Long
dc.contributor.authorOlsen, Tristan
dc.contributor.authorFan, Yanchen
dc.contributor.authorJiang, Jiali
dc.contributor.authorXu, Zhixin
dc.contributor.authorMa, ZiFeng
dc.contributor.authorLegut, Dominik
dc.contributor.authorXiong, Hui
dc.contributor.authorYuan, Xian-Zheng
dc.date.accessioned2021-06-30T09:30:10Z
dc.date.available2021-06-30T09:30:10Z
dc.date.issued2021
dc.identifier.citationChemical Engineering Journal. 2021, vol. 413, art. no. 127449.cs
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.urihttp://hdl.handle.net/10084/143137
dc.description.abstractConstructing heterostructures are capable of offering fascinating performance for electronics owing to the built-in charge transfer driving force. However, exploring a universal methodology to rationally design and control-lable synthesis of heterostructure with high stability of interface is a big challenge. Also the synergistic effect of the heterointerface in the composites remains to be clarified. Here, we report three-dimensional (3D) FeP/CoP heterostructure embedded within N-doped carbon aerogel (FeP/CoP-NA) through an in situ cross-linking and phosphorization process. In such a 3D hybrid, the FeP/CoP heterocrystals are wrapped by N-doped carbon which form a core-shell structure. Benefiting from the unique porous network induced by N-doped carbon, the con-ducting highway is built to promote the ion and electron fast diffusion. This structure can accommodate the volume change of FeP/CoP, which prevent the agglomeration and act as the protecting layer to maintain the integrity of the interface. Impressively, the atomic interface between FeP/CoP is successfully constructed, which could not only introduce enhanced capacitive contribution to facilitate electron transport, but also provide extra active sites to adsorb more Na+ proved by both experiments and density functional theory (DFT) calculations. As expected, FeP/CoP-NA electrode demonstrates an excellent rate capability of 342 mAh g(-1) at a current of 5 A g(-1) current density. , a high specific capacity of 525 mAh g(-1) at 0.2 A g(-1), and a long cycling stability over 8000 cycles at high.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesChemical Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.cej.2020.127449cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectheterointerfacecs
dc.subjectbimetallic phosphidecs
dc.subjectanodecs
dc.subjectfast kineticscs
dc.subjectsodium ion batteriescs
dc.titleIn situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performancecs
dc.typearticlecs
dc.identifier.doi10.1016/j.cej.2020.127449
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume413cs
dc.description.firstpageart. no. 127449cs
dc.identifier.wos000638225400005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam