Zobrazit minimální záznam

dc.contributor.authorBitta, Jan
dc.contributor.authorSvozilík, Vladislav
dc.contributor.authorSvozilíková Krakovská, Aneta
dc.date.accessioned2021-07-07T08:40:06Z
dc.date.available2021-07-07T08:40:06Z
dc.date.issued2021
dc.identifier.citationAtmosphere. 2021, vol. 12, issue 4, art. no. 452.cs
dc.identifier.issn2073-4433
dc.identifier.urihttp://hdl.handle.net/10084/143152
dc.description.abstractLand Use Regression (LUR) is one of the air quality assessment modelling techniques. Its advantages lie mainly in a much simpler mathematical apparatus, quicker and simpler calculations, and a possibility to incorporate more factors affecting pollutant concentration than standard dispersion models. The goal of the study was to perform the LUR model in the Polish-Czech-Slovakian Tritia region, to test two sets of pollution data input factors, i.e., factors based on emission data and pollution dispersion model results, to test regression via neural networks and compare it with standard linear regression. Both input datasets, emission data and pollution dispersion model results, provided a similar quality of results in the case when standard linear regression was used, the R-2 of the models was 0.639 and 0.652. Neural network regression provided a significantly higher quality of the models, their R-2 was 0.937 and 0.938 for the factors based on emission data and pollution dispersion model results respectively.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesAtmospherecs
dc.relation.urihttps://doi.org/10.3390/atmos12040452cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectlandcs
dc.subjectusecs
dc.subjectregressioncs
dc.subjectmodelcs
dc.subjectaircs
dc.subjectpollutioncs
dc.subjectmodellingcs
dc.subjectartificialcs
dc.subjectneural networkcs
dc.titleThe neural network assisted land use regressioncs
dc.typearticlecs
dc.identifier.doi10.3390/atmos12040452
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue4cs
dc.description.firstpageart. no. 452cs
dc.identifier.wos000642740300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.