Zobrazit minimální záznam

dc.contributor.authorGiannakoudakis, Dimitrios A.
dc.contributor.authorAnastopoulos, Ioannis
dc.contributor.authorBarczak, Mariusz
dc.contributor.authorAntoniou, Evita
dc.contributor.authorTerpiłowski, Konrad
dc.contributor.authorMohammadi, Elmira
dc.contributor.authorShams, Mahmoud
dc.contributor.authorCoy, Emerson
dc.contributor.authorBakandritsos, Aristides
dc.contributor.authorKatsoyiannis, Ioannis A.
dc.contributor.authorColmenares, Juan Carlos
dc.contributor.authorPashalidis, Ioannis
dc.date.accessioned2021-07-19T10:17:21Z
dc.date.available2021-07-19T10:17:21Z
dc.date.issued2021
dc.identifier.citationJournal of Hazardous Materials. 2021, vol. 413, art. no. 125279.cs
dc.identifier.issn0304-3894
dc.identifier.issn1873-3336
dc.identifier.urihttp://hdl.handle.net/10084/145084
dc.description.abstractThe removal of uranium species from aqueous phases using non-hazardous chemicals is still an open challenge, and remediation by adsorption is a prosperous strategy. Among the most crucial concerns regarding the design of an efficient material as adsorbent are, except the cost and the green character, the feasibility to be stable and effective under acidic pH, and to selectively adsorb the desired metal ion (e.g. uranium). Herein, we present a phosphonate functionalized ordered mesoporous silica (OMS-P), prepared by a one-step co-condensation synthesis. The physicochemical features of the material were determined by HR-TEM, XPS, EDX, N2 sorption, and solid NMR, while the surface zeta potential was also measured. The removal efficiency was evaluated at two different temperatures (20 and 50 ?C) in acidic environment to avoid interferences like solid phase formation or carbonate complexation and the adsorption isotherms, including data fitting with Langmuir and Freundlich models and thermodynamic parameters are presented and discussed. The high and homogeneous dispersion of the phosphonate groups within the entire silica?s structure led to the greatest reported up-todays capacity (345 mg/g) at pH = 4, which was achieved in less than 10 min. Additionally, OMS-P showed that the co-presence of other polyvalent cation like Eu(III) did not affect the efficiency of adsorption, which occurs via inner-sphere complex formation. The comparison to the non-functionalized silica (OMS) revealed that the key feature towards an efficient, stable, and selective removal of the U(VI) species is the specific surface chemistry rather than the textural and structural features. Based on all the results and spectroscopic validations of surface adsorbed U (VI), the main interactions responsible for the elevated uranium removal were proposed.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Hazardous Materialscs
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.125279cs
dc.rights© 2021 Elsevier B.V. All rights reserved.cs
dc.subjecturanium adsorptioncs
dc.subjectordered mesoporous silicacs
dc.subjectchemical functionalizationcs
dc.subjectwater pollutants remediationcs
dc.subjectwastewater treatmentcs
dc.titleEnhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the mostcs
dc.typearticlecs
dc.identifier.doi10.1016/j.jhazmat.2021.125279
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume413cs
dc.description.firstpageart. no. 125279cs
dc.identifier.wos000647432200002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam