Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorVlach, Oldřich
dc.date.accessioned2021-07-21T06:58:56Z
dc.date.available2021-07-21T06:58:56Z
dc.date.issued2021
dc.identifier.citationJournal of Computational and Applied Mathematics. 2021, vol. 394, art. no. 113565.cs
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.urihttp://hdl.handle.net/10084/145090
dc.description.abstractAugmented Lagrangian method is a well established tool for the solution of optimization problems with equality constraints. If combined with effective algorithms for the solution of bound constrained quadratic programming problems, it can solve efficiently very large problems with bound and linear equality constraints. The point of this paper is to show that the performance of the algorithm can be essentially improved by enhancing the information on the free set of current iterates into the reorthogonalization of equality constraints. The improvement is demonstrated on the numerical solution of a large problem arising from the application of domain decomposition methods to the solution of discretized elliptic variational inequality describing a variant of Hertz's two-body contact problem.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Computational and Applied Mathematicscs
dc.relation.urihttps://doi.org/10.1016/j.cam.2021.113565cs
dc.rights© 2021 Elsevier B.V. All rights reserved.cs
dc.subjectaugmented Lagrangianscs
dc.subjectadaptive augmentationcs
dc.subjectHertz’s problemcs
dc.titleAn accelerated augmented Lagrangian algorithm with adaptive orthogonalization strategy for bound and equality constrained quadratic programming and its application to large-scale contact problems of elasticitycs
dc.typearticlecs
dc.identifier.doi10.1016/j.cam.2021.113565
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume394cs
dc.description.firstpageart. no. 113565cs
dc.identifier.wos000645665800018


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam