Zobrazit minimální záznam

dc.contributor.authorZhou, Xin
dc.contributor.authorHwang, Imgon
dc.contributor.authorTomanec, Ondřej
dc.contributor.authorFehn, Dominik
dc.contributor.authorMazare, Anca
dc.contributor.authorZbořil, Radek
dc.contributor.authorMeyer, Karsten
dc.contributor.authorSchmuki, Patrik
dc.date.accessioned2021-08-23T08:38:32Z
dc.date.available2021-08-23T08:38:32Z
dc.date.issued2021
dc.identifier.citationAdvanced Functional Materials. 2021, vol. 31, issue 30, art. no. 2102843.cs
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttp://hdl.handle.net/10084/145102
dc.description.abstractSingle atom (SA) catalysis, over the last 10 years, has become a forefront in heterogeneous catalysis, electrocatalysis, and most recently also in photocatalysis. Most crucial when engineering a SA catalyst/support system is the creation of defined anchoring points on the support surface to stabilize reactive SA sites. Here, a so far unexplored but evidently very effective approach to trap and stabilize SAs on a broadly used photocatalyst platform is introduced. In self-organized anodic TiO2 nanotubes, a high degree of stress is incorporated in the amorphous oxide during nanotube growth. During crystallization (by thermal annealing), this leads to a high density of Ti3+-O-v, surface defects that are hardly present in other common titania nanostructures (as nanoparticles). These defects are highly effective for SA iridium trapping. Thus a SA-Ir photocatalyst with a higher photocatalytic activity than for any classic co-catalyst arrangement on the semiconductive substrate is obtained. Hence, a tool for SA trapping on titania-based back-contacted platforms is provided for wide application in electrochemistry and photoelectrochemistry. Moreover, it is shown that stably trapped SAs provide virtually all photocatalytic reactivity, with turnover frequencies in the order of 4 x 10(6) h(-1) in spite of representing only a small fraction of the initially loaded SAs.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAdvanced Functional Materialscs
dc.relation.urihttps://doi.org/10.1002/adfm.202102843cs
dc.rights© 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdark depositioncs
dc.subjecthydrogen generationcs
dc.subjectphotocatalysiscs
dc.subjectsingle atom iridiumcs
dc.subjectsingle-atom catalysiscs
dc.subjectTiO2 nanotubescs
dc.titleAdvanced photocatalysts: Pinning single atom co-catalysts on titania nanotubescs
dc.typearticlecs
dc.identifier.doi10.1002/adfm.202102843
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume31cs
dc.description.issue30cs
dc.description.firstpageart. no. 2102843cs
dc.identifier.wos000653524100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH