Zobrazit minimální záznam

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2021-08-23T10:20:55Z
dc.date.available2021-08-23T10:20:55Z
dc.date.issued2021
dc.identifier.citationSymmetry. 2021, vol. 13, issue 5, art. no. 800.cs
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10084/145105
dc.description.abstractThe Caratheodory form of the calculus of variations belongs to the class of Lepage equivalents of first-order Lagrangians in field theory. Here, this equivalent is generalized for second- and higher-order Lagrangians by means of intrinsic geometric operations applied to the well-known Poincare-Cartan form and principal component of Lepage forms, respectively. For second-order theory, our definition coincides with the previous result obtained by Crampin and Saunders in a different way. The Caratheodory equivalent of the Hilbert Lagrangian in general relativity is discussed.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSymmetrycs
dc.relation.urihttps://doi.org/10.3390/sym13050800cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCarathéodory formcs
dc.subjectPoincaré–Cartan formcs
dc.subjectLepage equivalentcs
dc.subjectfibered manifoldcs
dc.subjectvariational field theorycs
dc.titleOn the Carathéodory form in higher-order variational field theorycs
dc.typearticlecs
dc.identifier.doi10.3390/sym13050800
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue5cs
dc.description.firstpageart. no. 800cs
dc.identifier.wos000654587600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.