Zobrazit minimální záznam

dc.contributor.authorKalytchuk, Sergii
dc.contributor.authorZdražil, Lukáš
dc.contributor.authorBaďura, Zdeněk
dc.contributor.authorMedveď, Miroslav
dc.contributor.authorLanger, Michal
dc.contributor.authorPaloncýová, Markéta
dc.contributor.authorZoppellaro, Giorgio
dc.contributor.authorKershaw, Stephen, V.
dc.contributor.authorRogach, Andrey L.
dc.contributor.authorOtyepka, Michal
dc.contributor.authorZbořil, Radek
dc.date.accessioned2021-08-27T07:01:23Z
dc.date.available2021-08-27T07:01:23Z
dc.date.issued2021
dc.identifier.citationACS Nano. 2021, vol. 15, issue 4, p. 6582-6593.cs
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/10084/145121
dc.description.abstractHighly fluorescent carbon nanoparticles called carbon dots (CDs) have been the focus of intense research due to their simple chemical synthesis, nontoxic nature, and broad application potential including optoelectronics, photocatalysis, biomedicine, and energy-related technologies. Although a detailed elucidation of the mechanism of their photoluminescence (PL) remains an unmet challenge, the CDs exhibit robust, reproducible, and environment-sensitive PL signals, enabling us to monitor selected chemical phenomena including phase transitions or detection of ultralow concentrations of molecular species in solution. Herein, we report the PL turn-off/on behavior of aqueous CDs allowing the reversible monitoring of the water-ice phase transition. The bright PL attributable to molecular fluorophores present on the CD surface was quenched by changing the liquid aqueous environment to solid phase (ice). Based on light-induced electron paramagnetic resonance (LEPR) measurements and density functional theory (DFT) calculations, the proposed kinetic model assuming the presence of charge-separated trap states rationalized the observed sensitivity of PL lifetimes to the environment. Importantly, the PL quenching induced by freezing could be suppressed by adding a small amount of alcohols. This was attributed to a high tendency of alcohol to increase its concentration at the CD/solvent interface, as revealed by all-atom molecular dynamics simulations. Based on this behavior, a fluorescence "turn-on" alcohol sensor for exhaled breath condensate (EBC) analysis has been developed. This provided an easy method to detect alcohols among other common interferents in EBC with a low detection limit (100 ppm), which has a potential to become an inexpensive and noninvasive clinically useful diagnostic tool for early stage lung cancer screening.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Nanocs
dc.relation.urihttps://doi.org/10.1021/acsnano.0c09781cs
dc.rightsCopyright © 2021, American Chemical Societycs
dc.subjectcarbon dotscs
dc.subjectphotoluminescencecs
dc.subjectdiagnosticscs
dc.subjectalcohol nanosensorscs
dc.subjectphase transitioncs
dc.titleCarbon dots detect water-to-ice phase transition and act as alcohol sensors via fluorescence turn-off/on mechanismcs
dc.typearticlecs
dc.identifier.doi10.1021/acsnano.0c09781
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue4cs
dc.description.lastpage6593cs
dc.description.firstpage6582cs
dc.identifier.wos000645436800054


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam