dc.contributor.author | Huczala, Daniel | |
dc.contributor.author | Kot, Tomáš | |
dc.contributor.author | Pfurner, Martin | |
dc.contributor.author | Heczko, Dominik | |
dc.contributor.author | Oščádal, Petr | |
dc.contributor.author | Mostýn, Vladimír | |
dc.date.accessioned | 2021-08-30T06:36:21Z | |
dc.date.available | 2021-08-30T06:36:21Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Applied Sciences. 2021, vol. 11, issue 8, art. no. 3548. | cs |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | http://hdl.handle.net/10084/145124 | |
dc.description.abstract | Researchers often deal with the synthesis of the kinematic structure of a robotic manipulator to determine the optimal manipulator for a given task. This approach can lower the cost of the manipulator and allow it to achieve poses that might be unreachable by universal manipulators in an existing constrained environment. Numerical methods are broadly used to find the optimum design but they often require an estimated initial kinematic structure as input, especially if local-optimum-search algorithms are used. This paper presents four different algorithms for such an estimation using the standard Denavit-Hartenberg convention. Two of the algorithms are able to reach a given position and the other two can reach both position and orientation using Bezier splines approximation and vector algebra. The results are demonstrated with three chosen example poses and are evaluated by measuring manipulability and the total link length of the final kinematic structures. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Applied Sciences | cs |
dc.relation.uri | https://doi.org/10.3390/app11083548 | cs |
dc.rights | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | manipulator design | cs |
dc.subject | robot kinematics | cs |
dc.subject | synthesis of kinematic structure | cs |
dc.title | Initial estimation of kinematic structure of a robotic manipulator as an input for its synthesis | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/app11083548 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 11 | cs |
dc.description.issue | 8 | cs |
dc.description.firstpage | art. no. 3548 | cs |
dc.identifier.wos | 000644055400001 | |