Zobrazit minimální záznam

dc.contributor.authorVitali, Emanuele
dc.contributor.authorGadioli, Davide
dc.contributor.authorPalermo, Gianluca
dc.contributor.authorGolasowski, Martin
dc.contributor.authorBispo, João
dc.contributor.authorPinto, Pedro
dc.contributor.authorMartinovič, Jan
dc.contributor.authorSlaninová, Kateřina
dc.contributor.authorCardoso, João M. P.
dc.contributor.authorSilvano, Cristina
dc.date.accessioned2021-09-07T09:33:08Z
dc.date.available2021-09-07T09:33:08Z
dc.date.issued2021
dc.identifier.citationIEEE Transactions on Emerging Topics in Computing. 2021, vol. 9, issue 2, p. 1006-1019.cs
dc.identifier.issn2168-6750
dc.identifier.urihttp://hdl.handle.net/10084/145162
dc.description.abstractIncorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for selecting dynamically the number of samples used for the Monte Carlo simulation to solve the Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The proposed method is used to determine in a proactive manner the number of simulations to be done to extract the travel-time estimation for each specific request, while respecting an error threshold as output quality level. The methodology requires a reduced effort on the application development side. We adopted an aspect-oriented programming language (LARA) together with a flexible dynamic autotuning library (mARGOt) respectively to instrument the code and to make decisions on tuning the number of samples to improve the execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large fraction of simulations (between 36 and 81 percent) with respect to a static approach, while considering different traffic situations, paths and error requirements. Given the negligible runtime overhead of the proposed approach, the execution-time speedup is between 1.5x and 5.1x. This speedup is reflected at the infrastructure-level in terms of a reduction of 36 percent of the computing resources needed to support the whole navigation pipeline.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Transactions on Emerging Topics in Computingcs
dc.relation.urihttps://doi.org/10.1109/TETC.2019.2919801cs
dc.rightsCopyright © 2021, IEEEcs
dc.subjecthigh performance computingcs
dc.subjectapproximate computingcs
dc.subjectadaptive applicationscs
dc.subjectsmart citiescs
dc.subjectvehicle routingcs
dc.titleAn efficient Monte Carlo-based Probabilistic Time-Dependent Routing calculation targeting a server-side car navigation systemcs
dc.typearticlecs
dc.identifier.doi10.1109/TETC.2019.2919801
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue2cs
dc.description.lastpage1019cs
dc.description.firstpage1006cs
dc.identifier.wos000658346300036


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam