Zobrazit minimální záznam

dc.contributor.authorKubíček, Jan
dc.contributor.authorStrýček, Michal
dc.contributor.authorČerný, Martin
dc.contributor.authorPenhaker, Marek
dc.contributor.authorProkop, Ondřej
dc.contributor.authorVilímek, Dominik
dc.date.accessioned2021-09-08T10:59:21Z
dc.date.available2021-09-08T10:59:21Z
dc.date.issued2021
dc.identifier.citationSensors. 2021, vol. 21, issue 12, art. no. 4161.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/145171
dc.description.abstractIn the area of musculoskeletal MR images analysis, the image denoising plays an important role in enhancing the spatial image area for further processing. Recent studies have shown that non-local means (NLM) methods appear to be more effective and robust when compared with conventional local statistical filters, including median or average filters, when Rician noise is presented. A significant limitation of NLM is the fact that thy have the tendency to suppress tiny objects, which may represent clinically important information. For this reason, we provide an extensive quantitative and objective analysis of a novel NLM algorithm, taking advantage of pixel and patch similarity information with the optimization procedure for optimal filter parameters selection to demonstrate a higher robustness and effectivity, when comparing with NLM and conventional local means methods, including average and median filters. We provide extensive testing on variable noise generators with dynamical noise intensity to objectively demonstrate the robustness of the method in a noisy environment, which simulates relevant, variable and real conditions. This work also objectively evaluates the potential and benefits of the application of NLM filters in contrast to conventional local-mean filters. The final part of the analysis is focused on the segmentation performance when an NLM filter is applied. This analysis demonstrates a better performance of tissue identification with the application of smoothing procedure under worsening image conditions.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s21124161cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmusculoskeletal systemcs
dc.subjectimage denoisingcs
dc.subjectnon-local meanscs
dc.subjectfilter robustnesscs
dc.subjectlocal-meanscs
dc.subjectparameters optimizationcs
dc.subjectsegmentation performancecs
dc.titleQuantitative and comparative analysis of effectivity and robustness for enhanced and optimized non-local mean filter combining pixel and patch information on MR images of musculoskeletal systemcs
dc.typearticlecs
dc.identifier.doi10.3390/s21124161
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume21cs
dc.description.issue12cs
dc.description.firstpageart. no. 4161cs
dc.identifier.wos000666734400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.