Zobrazit minimální záznam

dc.contributor.authorGharajeh, Mohammad Samadi
dc.contributor.authorJond, Hossein B.
dc.date.accessioned2021-09-08T12:04:02Z
dc.date.available2021-09-08T12:04:02Z
dc.date.issued2021
dc.identifier.citationSensors. 2021, vol. 21, issue 10, art. no. 3433.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/145173
dc.description.abstractMobile robots are endeavoring toward full autonomy. To that end, wheeled mobile robots have to function under non-holonomic constraints and uncertainty derived by feedback sensors and/or internal dynamics. Speed control is one of the main and challenging objectives in the endeavor for efficient autonomous collision-free navigation. This paper proposes an intelligent technique for speed control of a wheeled mobile robot using a combination of fuzzy logic and supervised machine learning (SML). The technique is appropriate for flexible leader-follower formation control on straight paths where a follower robot maintains a safely varying distance from a leader robot. A fuzzy controller specifies the ultimate distance of the follower to the leader using the measurements obtained from two ultrasonic sensors. An SML algorithm estimates a proper speed for the follower based on the ultimate distance. Simulations demonstrated that the proposed technique appropriately adjusts the follower robot's speed to maintain a flexible formation with the leader robot.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s21103433cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectautonomous robotcs
dc.subjectspeed controlcs
dc.subjectintelligent techniquecs
dc.subjectfuzzy systemcs
dc.subjectsupervised machine learningcs
dc.titleSpeed control for leader-follower robot formation using fuzzy system and supervised machine learningcs
dc.typearticlecs
dc.identifier.doi10.3390/s21103433
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume21cs
dc.description.issue10cs
dc.description.firstpageart. no. 3433cs
dc.identifier.wos000662523600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.