Zobrazit minimální záznam

dc.contributor.authorKovář, Petr
dc.contributor.authorKravčenko, Michal
dc.contributor.authorSilber, Adam
dc.contributor.authorKrbeček, Matěj
dc.date.accessioned2021-09-22T09:36:15Z
dc.date.available2021-09-22T09:36:15Z
dc.date.issued2021
dc.identifier.citationDiscussiones Mathematicae Graph Theory. 2021, vol. 41, issue 4, p. 1041-1050.cs
dc.identifier.issn1234-3099
dc.identifier.issn2083-5892
dc.identifier.urihttp://hdl.handle.net/10084/145231
dc.description.abstractLet G = (V, E) be a graph with n vertices and e edges. A supermagic labeling of G is a bijection f from the set of edges E to a set of consecutive integers {a, a + 1,..., a + e - 1} such that for every vertex v is an element of V the sum of labels of all adjacent edges equals the same constant k. This k is called a magic constant of f, and G is a supermagic graph. The existence of supermagic labeling for certain classes of graphs has been the scope of many papers. For a comprehensive overview see Gallian's Dynamic survey of graph labeling in the Electronic Journal of Combinatorics. So far, regular or almost regular graphs have been studied. This is natural, since the same magic constant has to be achieved both at vertices of high degree as well as at vertices of low degree, while the labels are distinct consecutive integers.cs
dc.language.isoencs
dc.publisherUniversity of Zielona Góracs
dc.relation.ispartofseriesDiscussiones Mathematicae Graph Theorycs
dc.relation.urihttps://doi.org/10.7151/dmgt.2227cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cs
dc.subjectgraph labelingcs
dc.subjectsupermagic labelingcs
dc.subjectnon-regular graphscs
dc.titleSupermagic graphs with many different degreescs
dc.typearticlecs
dc.identifier.doi10.7151/dmgt.2227
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume41cs
dc.description.issue4cs
dc.description.lastpage1050cs
dc.description.firstpage1041cs
dc.identifier.wos000667233200010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-nc-nd/3.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-nc-nd/3.0/