Zobrazit minimální záznam

dc.contributor.authorElghamrawy, Sally M.
dc.contributor.authorHassnien, Aboul Ella
dc.contributor.authorSnášel, Václav
dc.date.accessioned2021-10-01T08:37:05Z
dc.date.available2021-10-01T08:37:05Z
dc.date.issued2021
dc.identifier.citationComputers, Materials & Continua. 2021, vol. 67, issue 2, s. 2353-2371.cs
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.urihttp://hdl.handle.net/10084/145251
dc.description.abstractDetecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic's additional spread and early provide the appropriate treatment to the affected patients. This study aimed to develop a COVID-19 diagnosis and prediction (AIMDP) model that could identify patients with COVID-19 and distinguish it from other viral pneumonia signs detected in chest computed tomography (CT) scans. The proposed system uses convolutional neural networks (CNNs) as a deep learning technology to process hundreds of CT chest scan images and speeds up COVID-19 case prediction to facilitate its containment. We employed the whale optimization algorithm (WOA) to select the most relevant patient signs. A set of experiments validated AIMDP performance. It demonstrated the superiority of AIMDP in terms of the area under the curve-receiver operating characteristic (AUC-ROC) curve, positive predictive value (PPV), negative predictive rate (NPR) and negative predictive value (NPV). AIMDP was applied to a dataset of hundreds of real data and CT images, and it was found to achieve 96% AUC for diagnosing COVID-19 and 98% for overall accuracy. The results showed the promising performance of AIMDP for diagnosing COVID-19 when compared to other recent diagnosing and predicting models.cs
dc.language.isoencs
dc.publisherTech Science Presscs
dc.relation.ispartofseriesComputers, Materials & Continuacs
dc.relation.urihttps://doi.org/10.32604/cmc.2021.014767cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectconvolutional neural networkscs
dc.subjectcoronavirus disease 2019 (COVID-19)cs
dc.subjectCT chest scan imagingcs
dc.subjectdeep learning techniquecs
dc.subjectfeature selectioncs
dc.subjectwhale optimization algorithmcs
dc.titleOptimized deep learning - Inspired model for the diagnosis and prediction of COVID-19cs
dc.typearticlecs
dc.identifier.doi10.32604/cmc.2021.014767
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume67cs
dc.description.issue2cs
dc.description.lastpage2371cs
dc.description.firstpage2353cs
dc.identifier.wos000616713000026


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/