Zobrazit minimální záznam

dc.contributor.authorDrglin, Ajda Zavrtanik
dc.contributor.authorFilipovski, Slobodan
dc.contributor.authorJajcay, Robert
dc.contributor.authorRaiman, Tom
dc.date.accessioned2021-10-05T07:40:27Z
dc.date.available2021-10-05T07:40:27Z
dc.date.issued2021
dc.identifier.citationGraphs and Combinatorics. 2021.cs
dc.identifier.issn0911-0119
dc.identifier.issn1435-5914
dc.identifier.urihttp://hdl.handle.net/10084/145262
dc.description.abstractAn edge-girth-regular egr(v, k, g, lambda)-graph Gamma is a k-regular graph of order v and girth g in which every edge is contained in lambda distinct g-cycles. Edge-girth-regularity is shared by several interesting classes of graphs which include edge- and arctransitive graphs, Moore graphs, as well as many of the extremal k-regular graphs of prescribed girth or diameter. Infinitely many egr(v, k, g, lambda)-graphs are known to exist for sufficiently large parameters (k, g, lambda), and in line with the well-known Cage Problem we attempt to determine the smallest graphs among all edge-girth-regular graphs for given parameters (k, g, lambda). To facilitate the search for egro(v, k, g, lambda)-graphs of the smallest possible orders, we derive lower bounds in terms of the parameters k, g and lambda. We also determine the orders of the smallest egro(v, k, g, lambda)-graphs for some specific parameters (k, g, lambda), and address the problem of the smallest possible orders of bipartite edge-girth-regular graphs.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesGraphs and Combinatoricscs
dc.relation.urihttps://doi.org/10.1007/s00373-021-02368-9cs
dc.rightsCopyright © 2021, The Author(s), under exclusive licence to Springer Japan KK, part of Springer Naturecs
dc.subjectregular graphcs
dc.subjectgirthcs
dc.subjectminimal ordercs
dc.subjectvertex-transitive graphcs
dc.titleExtremal edge-girth-regular graphscs
dc.typearticlecs
dc.identifier.doi10.1007/s00373-021-02368-9
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000674125900002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam