Zobrazit minimální záznam

dc.contributor.authorKolokithas-Ntoukas, Argiris
dc.contributor.authorBakandritsos, Aristides
dc.contributor.authorBelza, Jan
dc.contributor.authorKeša, Peter
dc.contributor.authorHerynek, Vít
dc.contributor.authorPankrác, Jan
dc.contributor.authorAngelopoulou, Athina
dc.contributor.authorMalina, Ondřej
dc.contributor.authorAvgoustakis, Konstantinos
dc.contributor.authorGeorgakilas, Vasilios
dc.contributor.authorPoláková, Kateřina
dc.contributor.authorZbořil, Radek
dc.date.accessioned2021-10-06T07:54:31Z
dc.date.available2021-10-06T07:54:31Z
dc.date.issued2021
dc.identifier.citationACS Applied Materials & Interfaces. 2021, vol. 13, issue 25, p. 29247-29256.cs
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.urihttp://hdl.handle.net/10084/145270
dc.description.abstractMagnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Applied Materials & Interfacescs
dc.relation.urihttps://doi.org/10.1021/acsami.1c00908cs
dc.rightsCopyright © 2021 American Chemical Societycs
dc.subjectphotothermal agentscs
dc.subjectiron oxidescs
dc.subjectcondensed clusterscs
dc.subjectmultimodal imagingcs
dc.subjectnoncovalent functionalizationcs
dc.titleCondensed clustered iron oxides for ultrahigh photothermal conversion and in vivo multimodal imagingcs
dc.typearticlecs
dc.identifier.doi10.1021/acsami.1c00908
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue25cs
dc.description.lastpage29256cs
dc.description.firstpage29247cs
dc.identifier.wos000670430100002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam