Zobrazit minimální záznam

dc.contributor.authorHaslinger, Jaroslav
dc.contributor.authorKučera, Radek
dc.contributor.authorSassi, Taoufik
dc.contributor.authorŠátek, Václav
dc.date.accessioned2021-10-20T13:59:52Z
dc.date.available2021-10-20T13:59:52Z
dc.date.issued2021
dc.identifier.citationMathematics and Computers in Simulation. 2021, vol. 189, special issue, p. 191-206.cs
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.urihttp://hdl.handle.net/10084/145334
dc.description.abstractThe paper deals with the numerical realization of the 3D Stokes flow subject to threshold slip boundary conditions. The weak velocity-pressure formulation leads to an inequality type problem that is approximated by a mixed finite element method. The resulting algebraic system is non-smooth. Besides the pressure, three additional Lagrange multipliers are introduced: the discrete normal stress releasing the impermeability condition and two discrete shear stresses regularizing the non-smooth slip term. Eliminating the discrete velocity component we obtain the minimization problem for the smooth functional, expressed in terms of the pressure, the normal, and the shear stresses. This problem is solved either by a path following variant of the interior point method or by the semi-smooth Newton method. Numerical scalability is illustrated by computational experiments.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMathematics and Computers in Simulationcs
dc.relation.urihttps://doi.org/10.1016/j.matcom.2020.12.015cs
dc.rights© 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.cs
dc.subjectStokes problemcs
dc.subjectstick-slip boundary conditionscs
dc.subjectinterior-point methodcs
dc.subjectsemi-smooth Newton methodcs
dc.titleDual strategies for solving the Stokes problem with stick–slip boundary conditions in 3Dcs
dc.typearticlecs
dc.identifier.doi10.1016/j.matcom.2020.12.015
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume189cs
dc.description.lastpage206cs
dc.description.firstpage191cs
dc.identifier.wos000683684700015


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam