Zobrazit minimální záznam

dc.contributor.authorSikora, Jan
dc.contributor.authorWagnerová, Renata
dc.contributor.authorLandryová, Lenka
dc.contributor.authorŠíma, Jan
dc.contributor.authorWrona, Stanislaw
dc.date.accessioned2021-11-02T08:57:52Z
dc.date.available2021-11-02T08:57:52Z
dc.date.issued2021
dc.identifier.citationApplied Sciences. 2021, vol. 11, issue 16, art. no. 7484.cs
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10084/145365
dc.description.abstractFeatured Application Technical Diagnosis and Applied Informatics. Testing the quality of manufactured products based on their sound expression is becoming popular nowadays. To maintain low production costs, the testing is processed at the end of the assembly line. Such measurements are affected considerably by the factory noise even though they are performed in anechoic chambers. Before designing the quality control algorithm based on a convolutional neural network, we do not know the influence of the factory noise on the success rate of the algorithm that can potentially be obtained. Therefore, this contribution addresses this problem. The experiments were undertaken on a synthetic dataset of heat, ventilation, and air-conditioning devices. The results show that classification accuracy of the decision-making algorithm declines more rapidly at a high level of environmental noise.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesApplied Sciencescs
dc.relation.urihttps://doi.org/10.3390/app11167484cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectHVACcs
dc.subjectacoustic measurementcs
dc.subjectquality controlcs
dc.subjectconvolutional neural networkcs
dc.subjectassembly linecs
dc.titleInfluence of environmental noise on quality control of HVAC devices based on convolutional neural networkcs
dc.typearticlecs
dc.identifier.doi10.3390/app11167484
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue16cs
dc.description.firstpageart. no. 7484cs
dc.identifier.wos000688611100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.