Zobrazit minimální záznam

dc.contributor.authorKrček, Jiří
dc.date.accessioned2021-11-16T11:51:52Z
dc.date.available2021-11-16T11:51:52Z
dc.date.issued2021
dc.identifier.citationApplications of Mathematics. 2021.cs
dc.identifier.issn0862-7940
dc.identifier.issn1572-9109
dc.identifier.urihttp://hdl.handle.net/10084/145682
dc.description.abstractOptical diffraction on a periodical interface belongs to relatively lowly exploited applications of the boundary integral equations method. This contribution presents a less frequent approach to the diffraction problem based on vector tangential fields of electromagnetic intensities. The problem is formulated as the system of boundary integral equations for tangential fields, for which existence and uniqueness of weak solution is proved. The properties of introduced boundary operators with singular kernel are discussed with regard to performed numerical implementation. Presented theoretical model is of advantage when the electromagnetic field near the material interface is studied, that is illustrated by several application outputs.cs
dc.language.isoencs
dc.publisherAkademie věd České republiky. Matematický ústavcs
dc.relation.ispartofseriesApplications of Mathematicscs
dc.relation.urihttps://doi.org/10.21136/AM.2021.0098-20cs
dc.rightsCopyright © 2021, Institute of Mathematics, Czech Academy of Sciencescs
dc.subjectoptical diffractioncs
dc.subjecttangential fieldscs
dc.subjectboundary elements methodcs
dc.titleBie model of periodic diffraction problems in opticscs
dc.typearticlecs
dc.identifier.doi10.21136/AM.2021.0098-20
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000698335200001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam