Zobrazit minimální záznam

dc.contributor.authorGorjani, Ojan Majidzadeh
dc.contributor.authorByrtus, Radek
dc.contributor.authorDohnal, Jakub
dc.contributor.authorBilík, Petr
dc.contributor.authorKoziorek, Jiří
dc.contributor.authorMartinek, Radek
dc.date.accessioned2021-11-22T07:58:09Z
dc.date.available2021-11-22T07:58:09Z
dc.date.issued2021
dc.identifier.citationSensors. 2021, vol. 21, issue 18, art. no. 6207.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/145702
dc.description.abstractThe number of smart homes is rapidly increasing. Smart homes typically feature functions such as voice-activated functions, automation, monitoring, and tracking events. Besides comfort and convenience, the integration of smart home functionality with data processing methods can provide valuable information about the well-being of the smart home residence. This study is aimed at taking the data analysis within smart homes beyond occupancy monitoring and fall detection. This work uses a multilayer perceptron neural network to recognize multiple human activities from wrist- and ankle-worn devices. The developed models show very high recognition accuracy across all activity classes. The cross-validation results indicate accuracy levels above 98% across all models, and scoring evaluation methods only resulted in an average accuracy reduction of 10%.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s21186207cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecthuman activity recognitioncs
dc.subjectartificial neural network (ANN)cs
dc.subjectintelligent buildings (IB)cs
dc.subjectsmart home (SH)cs
dc.titleHuman activity classification using multilayer perceptroncs
dc.typearticlecs
dc.identifier.doi10.3390/s21186207
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume21cs
dc.description.issue18cs
dc.description.firstpageart. no. 6207cs
dc.identifier.wos000699984700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.