Zobrazit minimální záznam

dc.contributor.authorOpěla, Petr
dc.contributor.authorSchindler, Ivo
dc.contributor.authorKawulok, Petr
dc.contributor.authorKawulok, Rostislav
dc.contributor.authorRusz, Stanislav
dc.contributor.authorNavrátil, Horymír
dc.date.accessioned2021-11-22T09:39:16Z
dc.date.available2021-11-22T09:39:16Z
dc.date.issued2021
dc.identifier.citationJournal of Materials Research and Technology. 2021, vol. 14, p. 1837-1847.cs
dc.identifier.issn2238-7854
dc.identifier.issn2214-0697
dc.identifier.urihttp://hdl.handle.net/10084/145706
dc.description.abstractIn recent years, the study of the hot deformation behavior of various materials is significantly marked by an increasing utilization of artificial neural networks, which are frequently employed for a hot flow curve description. This specific kind of description is commonly solved via a Feed-Forward Multi-Layer Perceptron architecture and rarely via a Radial Basis architecture. Both network architectures are compared to assess their suitability in the process of a hot flow curve description under a wide range of thermomechanical conditions. The performed survey is also aimed on the eventual utilization of corresponding modifications of both studied networks, namely on a Cascade-Forward Multi-Layer Perceptron and Generalized Regression network. The main results have shown that the Feed-Forward Multi-Layer Perceptron architecture represents a good choice if very high accuracy is a crucial goal. However, in the case of this architecture, finding the proper parameters can be time-consuming and the hardware burdensome. On the contrary, for the flow curve description the almost unused Radial Basis network offers a very easy training procedure and significantly shorter computing time under acceptable accuracy. The results of the submitted research should then serve as a background for the selection and following application of a suitable network architecture in the process of solving future flow curve description tasks.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Materials Research and Technologycs
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2021.07.100cs
dc.rights© 2021 The Authors. Published by Elsevier B.V.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjecthot deformation behaviorcs
dc.subjecthot flow curve descriptioncs
dc.subjectmulti-layer feed-forward networkcs
dc.subjectmulti-layer cascade-forward networkcs
dc.subjectradial basis networkcs
dc.subjectgeneralized regression networkcs
dc.titleOn various multi-layer perceptron and radial basis function based artificial neural networks in the process of a hot flow curve descriptioncs
dc.typearticlecs
dc.identifier.doi10.1016/j.jmrt.2021.07.100
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.lastpage1847cs
dc.description.firstpage1837cs
dc.identifier.wos000704333200012


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Authors. Published by Elsevier B.V.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Authors. Published by Elsevier B.V.