Zobrazit minimální záznam

dc.contributor.authorGenčev, Marian
dc.date.accessioned2022-02-10T09:47:47Z
dc.date.available2022-02-10T09:47:47Z
dc.date.issued2021
dc.identifier.citationMediterranean Journal of Mathematics. 2021, vol. 18, issue 6, art. no. 236.cs
dc.identifier.issn1660-5446
dc.identifier.issn1660-5454
dc.identifier.urihttp://hdl.handle.net/10084/145776
dc.description.abstractIn the last decade, many authors essentially contributed to the attractive theory of multiple zeta values. Nevertheless, since their introduction in 1992, there are still many hypotheses and open problems waiting to be solved. The aim of this paper is to develop a method for transforming the multiple zeta-star values. zeta*({2}(K), c) leading to a new sum formula for alternating multiple zeta-star values. Its most simple case has the intelligible form Sigma(c-2)(t=0) (-2)(t+1) Sigma(i >= 2,s is an element of Nt)(i+vertical bar s vertical bar-c) zeta*((i) over bar, s) = (-1)(c) . zeta(c). As a by-product, we also establish a closed form for a new harmonic-like finite summation containing binomial coefficients.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesMediterranean Journal of Mathematicscs
dc.relation.urihttps://doi.org/10.1007/s00009-021-01844-zcs
dc.rightsCopyright © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AGcs
dc.subjectmultiple zeta valuescs
dc.subjectbinomial sumscs
dc.subjectdifference equationscs
dc.titleA weighted sum formula for alternating multiple zeta-star valuescs
dc.typearticlecs
dc.identifier.doi10.1007/s00009-021-01844-z
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume18cs
dc.description.issue6cs
dc.description.firstpageart. no. 236cs
dc.identifier.wos000706770100002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam