Zobrazit minimální záznam

dc.contributor.authorZapletal, Jan
dc.contributor.authorWatschinger, Raphael
dc.contributor.authorOf, Günther
dc.contributor.authorMerta, Michal
dc.date.accessioned2022-03-21T08:08:18Z
dc.date.available2022-03-21T08:08:18Z
dc.date.issued2021
dc.identifier.citationComputers & Mathematics with Applications. 2021, vol. 103, p. 156-170.cs
dc.identifier.issn0898-1221
dc.identifier.issn1873-7668
dc.identifier.urihttp://hdl.handle.net/10084/145947
dc.description.abstractThe presented paper concentrates on the boundary element method (BEM) for the heat equation in three spatial dimensions. In particular, we deal with tensor product space-time meshes allowing for quadrature schemes analytic in time and numerical in space. The spatial integrals can be treated by standard BEM techniques known from three dimensional stationary problems. The contribution of the paper is twofold. First, we provide temporal antiderivatives of the heat kernel necessary for the assembly of BEM matrices and the evaluation of the representation formula. Secondly, the presented approach has been implemented in a publicly available library besthea allowing researchers to reuse the formulae and BEM routines straightaway. The results are validated by numerical experiments in an HPC environment.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Mathematics with Applicationscs
dc.relation.urihttps://doi.org/10.1016/j.camwa.2021.10.025cs
dc.rights© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectboundary element methodcs
dc.subjectspace-timecs
dc.subjectheat equationcs
dc.subjectintegrationcs
dc.subjectparallelisationcs
dc.titleSemi-analytic integration for a parallel space-time boundary element method modelling the heat equationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.camwa.2021.10.025
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume103cs
dc.description.lastpage170cs
dc.description.firstpage156cs
dc.identifier.wos000721358500010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.