Zobrazit minimální záznam

dc.contributor.authorYalavarthi, Rambabu
dc.contributor.authorMascaretti, Luca
dc.contributor.authorKudyshev, Zhaxylyk A.
dc.contributor.authorDutta, Aveek
dc.contributor.authorKalytchuk, Sergii
dc.contributor.authorZbořil, Radek
dc.contributor.authorSchmuki, Patrik
dc.contributor.authorShalaev, Vladimir M.
dc.contributor.authorKment, Štěpán
dc.contributor.authorBoltasseva, Alexandra
dc.contributor.authorNaldoni, Alberto
dc.date.accessioned2022-03-23T12:19:01Z
dc.date.available2022-03-23T12:19:01Z
dc.date.issued2021
dc.identifier.citationACS Applied Energy Materials. 2021, vol. 4, issue 10, p. 11367-11376.cs
dc.identifier.issn2574-0962
dc.identifier.urihttp://hdl.handle.net/10084/145958
dc.description.abstractThe integration of thin films made up of periodic plasmonic nanostructures and semiconductors holds great potential to develop efficient technologies for photoelectrochemical solar energy conversion and storage. However, to date, only periodic nanoantenna arrays made up of Au have been explored, posing severe limitations in terms of scalability and costs. Here, we show that nickel nanopillar arrays can support complex electromagnetic resonances that strongly enhance the photoelectrochemical response of CdS thin films. By controlling the pitch size and diameter of the nanopillars, we obtain broadband light absorption from the ultraviolet (UV) to the near-infrared (NIR) wavelength range, thus achieving large photocurrent enhancements compared to a planar Ni/CdS sample and in line with those generated by previously reported Au nanostructures. The photocurrent enhancement is attributed to photonic modes in the UV and hybrid cavity-plasmonic modes in the visible and NIR ranges, which give rise to efficient energy transfer and hot carrier injection between metallic structures, the semiconductor, and the electrolyte. The developed nanopillar arrays are promising candidates for photoelectrochemical devices fully exploiting the solar spectrum and using Earth-abundant raw materials.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Applied Energy Materialscs
dc.relation.urihttps://doi.org/10.1021/acsaem.1c02183cs
dc.rightsCopyright © 2021, American Chemical Societycs
dc.subjectplasmonic photoelectrochemistrycs
dc.subjecthot holescs
dc.subjectmetasurfacescs
dc.subjectalternative plasmonic materialscs
dc.subjectsurface plasmonscs
dc.titleEnhancing photoelectrochemical energy storage by large-area CdS-coated nickel nanoantenna arrayscs
dc.typearticlecs
dc.identifier.doi10.1021/acsaem.1c02183
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume4cs
dc.description.issue10cs
dc.description.lastpage11376cs
dc.description.firstpage11367cs
dc.identifier.wos000711236300097


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam