Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.date.accessioned2022-03-29T14:25:39Z
dc.date.available2022-03-29T14:25:39Z
dc.date.issued2021
dc.identifier.citationEnergies. 2021, vol. 14, issue 22, art. no. 7581.cs
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10084/145974
dc.description.abstractForecasting Photovoltaic (PV) energy production, based on the last weather and power data only, can obtain acceptable prediction accuracy in short-time horizons. Numerical Weather Prediction (NWP) systems usually produce free forecasts of the local cloud amount each 6 h. These are considerably delayed by several hours and do not provide sufficient quality. A Differential Polynomial Neural Network (D-PNN) is a recent unconventional soft-computing technique that can model complex weather patterns. D-PNN expands the n-variable k(th) order Partial Differential Equation (PDE) into selected two-variable node PDEs of the first or second order. Their derivatives are easy to convert into the Laplace transforms and substitute using Operator Calculus (OC). D-PNN proves two-input nodes to insert their PDE components into its gradually expanded sum model. Its PDE representation allows for the variability and uncertainty of specific patterns in the surface layer. The proposed all-day single-model and intra-day several-step PV prediction schemes are compared and interpreted with differential and stochastic machine learning. The statistical models are evolved for the specific data time delay to predict the PV output in complete day sequences or specific hours. Spatial data from a larger territory and the initially recognized daily periods enable models to compute accurate predictions each day and compensate for unexpected pattern variations and different initial conditions. The optimal data samples, determined by the particular time shifts between the model inputs and output, are trained to predict the Clear Sky Index in the defined horizon.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesEnergiescs
dc.relation.urihttps://doi.org/10.3390/en14227581cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectlocal weather modelingcs
dc.subjectpolynomial networkcs
dc.subjectpartial differential equationcs
dc.subjectpolynomial PDE conversioncs
dc.subjectderivative laplace transformationcs
dc.subjectcomponent modelcs
dc.titlePhotovoltaic energy all-day and intra-day forecasting using node by node developed polynomial networks forming PDE models based on the L-transformationcs
dc.typearticlecs
dc.identifier.doi10.3390/en14227581
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue22cs
dc.description.firstpageart. no. 7581cs
dc.identifier.wos000725498400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.