Zobrazit minimální záznam

dc.contributor.authorWang, Wanli
dc.contributor.authorPang, Jinbo
dc.contributor.authorSu, Jie
dc.contributor.authorLi, Fujiang
dc.contributor.authorLi, Qiang
dc.contributor.authorWang, Xiaoxiong
dc.contributor.authorWang, Jingang
dc.contributor.authorIbarlucea, Bergoi
dc.contributor.authorLiu, Xiaoyan
dc.contributor.authorLi, Yufen
dc.contributor.authorZhou, Weijia
dc.contributor.authorWang, Kai
dc.contributor.authorHan, Qingfang
dc.contributor.authorLiu, Lei
dc.contributor.authorZang, Ruohan
dc.contributor.authorRümmeli, Mark H.
dc.contributor.authorLi, Yang
dc.contributor.authorLiu, Hong
dc.contributor.authorHu, Han
dc.contributor.authorCuniberti, Gianaurelio
dc.date.accessioned2022-04-11T07:14:38Z
dc.date.available2022-04-11T07:14:38Z
dc.date.issued2021
dc.identifier.citationInfoMat. 2021, vol. 4, issue 2.cs
dc.identifier.issn2567-3165
dc.identifier.urihttp://hdl.handle.net/10084/146015
dc.description.abstractThe dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment. However, conventional biomedical and healthcare devices have shortcomings such as short service life, large equipment size, and high potential safety hazards. Indeed, the power supply for conventional implantable device remains predominantly batteries. The emerging nanogenerators, which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy, provide an ideal solution for self-powering of biomedical devices. The combination of nanogenerators and biomedicine has been accelerating the development of self-powered biomedical equipment. This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications, including power supply, smart sensing, and effective treatment. Besides, the microbial disinfection and biodegradation performances of nanogenerators have been updated. Next, the protection devices have been discussed such as face mask with air filtering function together with real-time monitoring of human health from the respiration and heat emission. Besides, the nanogenerator devices have been categorized by the types of mechanical energy from human beings, such as the body movement, tissue and organ activities, energy from chemical reactions, and gravitational potential energy. Eventually, the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesInfoMatcs
dc.relation.urihttps://doi.org/10.1002/inf2.12262cs
dc.rights© 2021 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbiomedical engineeringcs
dc.subjecthealthcarecs
dc.subjectimplantable devicescs
dc.subjectnanogeneratorscs
dc.subjectself-powered devicescs
dc.subjectsensorscs
dc.titleApplications of nanogenerators for biomedical engineering and healthcare systemscs
dc.typearticlecs
dc.identifier.doi10.1002/inf2.12262
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume4cs
dc.description.issue2cs
dc.identifier.wos000736420600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.