Zobrazit minimální záznam

dc.contributor.authorHrabovský, Leopold
dc.contributor.authorFries, Jiří
dc.date.accessioned2022-04-11T09:55:16Z
dc.date.available2022-04-11T09:55:16Z
dc.date.issued2021
dc.identifier.citationEnergies. 2021, vol. 14, issue 23, art. no. 7984.cs
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10084/146021
dc.description.abstractThe paper presents a methodology for determining the volume of a batch of conveyed material located before a transverse partition of a certain height and the distance over which the batch of material extends on the working surface of the conveyor belt along its longitudinal axis. Knowing the geometric dimensions of the transported batch of material makes it possible to appropriately set the spacing of the belt cleats and thereby to optimally determine the conveying performance of the inclined belt conveyor. When the angle of inclination of a conveyor with a straight idler frame is equal to the angle of surcharge of the conveyed material, then no layer of material is carried on the surface of the belt. If the conveyor belt is guided along a trough idler frame, only the lower cross-section of the filling of material is used. An increase in the cross-section of the belt load of a conveyor inclined at an angle, which exceeds the angle of repose of the conveyed material, can be achieved by installing regularly spaced belt cleats around the circumference of the working surface of the endless loop of the conveyor belt. The volume of the batch of material retained by the belt cleat depends on the height and width of the cleat and whether or not the conveyor belt is provided with corrugated side edges. The paper presents theoretically determined relationships that can be used to determine the size of the transverse and longitudinal area and the volume of the batch of material spread on the surface of the conveyor belt in front of the cleat. The experiments performed provide the distances of the material distribution on the surface of the conveyor belt depending on the height of the cleat and the angle of inclination of the conveyor belt.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesEnergiescs
dc.relation.urihttps://doi.org/10.3390/en14237984cs
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbatch volume of conveyed materialcs
dc.subjectbelt cleatscs
dc.subjectstraight loading profile of the conveyor beltcs
dc.subjectflat roller support of the beltcs
dc.subjectangle of inclination of the conveyorcs
dc.titleTransport performance of a steeply situated belt conveyorcs
dc.typearticlecs
dc.identifier.doi10.3390/en14237984
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue23cs
dc.description.firstpageart. no. 7984cs
dc.identifier.wos000735446000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.