Zobrazit minimální záznam

dc.contributor.authorLi, Yingchao
dc.contributor.authorAquino, Adélia J. A.
dc.contributor.authorSiddique, Farhan
dc.contributor.authorNiehaus, Thomas A.
dc.contributor.authorLischka, Hans
dc.contributor.authorNachtigallová, Dana
dc.date.accessioned2022-04-13T14:53:40Z
dc.date.available2022-04-13T14:53:40Z
dc.date.issued2021
dc.identifier.citationPhysical Chemistry Chemical Physics. 2021, vol. 24, issue 3, p. 1722-1735.cs
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttp://hdl.handle.net/10084/146047
dc.description.abstractThe design of materials with enhanced luminescence properties is a fast-developing field due to the potential applicability of these materials as light-emitting diodes or for bioimaging. A transparent way to enhance the emission properties of interesting molecular candidates is blocking competing and unproductive non-radiative relaxation pathways by the restriction of intramolecular motions. Rationalized functionalization is an important possibility to achieve such restrictions. Using time-dependent density functional theory (TD-DFT) based on the omega B97XD functional and the semiempirical tight-binding method including long-range corrections (TD-LC-DFTB), this work investigates the effect of functionalization of the paradigmatic tetraphenylethylene (TPE) on achieving restricted access to conical intersections (RACI). Photodynamical surface hopping simulations have been performed on a larger set of compounds including TPE and ten functionalized TPE compounds. Functionalization has been achieved by means of electron-withdrawing groups, bulky groups which block the relaxation channels via steric hindrance and groups capable of forming strong hydrogen bonds, which restrict the motion via the formation of hydrogen bond channels. Most of the investigated functionalized TPE candidates show ultrafast deactivation to the ground state due to their still existing structural flexibility, but two examples, one containing -CN and -CF3 groups and a second characterized by a network of hydrogen bonds, have been identified as interesting candidates for creating efficient luminescence properties in solution.cs
dc.language.isoencs
dc.publisherRoyal Society of Chemistrycs
dc.relation.ispartofseriesPhysical Chemistry Chemical Physicscs
dc.relation.urihttps://doi.org/10.1039/d1cp04848acs
dc.titlePathways to fluorescence via restriction of intramolecular motion in substituted tetraphenylethylenescs
dc.typearticlecs
dc.identifier.doi10.1039/d1cp04848a
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.description.issue3cs
dc.description.lastpage1735cs
dc.description.firstpage1722cs
dc.identifier.wos000739501700001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam