Zobrazit minimální záznam

dc.contributor.authorUllah, Sami
dc.contributor.authorLiu, Yu
dc.contributor.authorHasan, Maria
dc.contributor.authorZeng, Wenwen
dc.contributor.authorShi, Qitao
dc.contributor.authorYang, Xiaoqin
dc.contributor.authorFu, Lei
dc.contributor.authorTa, Huy Q.
dc.contributor.authorLian, Xueyu
dc.contributor.authorSun, Jingyu
dc.contributor.authorYang, Ruizhi
dc.contributor.authorLiu, Lijun
dc.contributor.authorRümmeli, Mark H.
dc.date.accessioned2022-04-25T12:23:26Z
dc.date.available2022-04-25T12:23:26Z
dc.date.issued2021
dc.identifier.citationNano Research. 2021, vol. 15, issue 2, p. 1310-1318.cs
dc.identifier.issn1998-0124
dc.identifier.issn1998-0000
dc.identifier.urihttp://hdl.handle.net/10084/146075
dc.description.abstractGraphene doping continues to gather momentum because it enables graphene properties to be tuned, thereby affording new properties to, improve the performance of, and expand the application potential of graphene. Graphene can be chemically doped using various methods such as surface functionalization, hybrid composites (e.g., nanoparticle decoration), and substitution doping, wherein C atoms are replaced by foreign ones in the graphene lattice. Theoretical works have predicted that graphene could be substitutionally doped by aluminum (Al) atoms, which could hold promise for exciting applications, including hydrogen storage and evolution, and supercapacitors. Other theoretical predictions suggest that Al substitutionally doped graphene (AlG) could serve as a material for gas sensors and the catalytic decomposition of undesirable materials. However, fabricating Al substitutionally doped graphene has proven challenging until now. Herein, we demonstrate how controlled-flow chemical vapor deposition (CVD) implementing a simple solid precursor can yield high-quality and large-area monolayer AlG, and this synthesis is unequivocally confirmed using various characterization methods including local electron energy-loss spectroscopy (EELS). Detailed high-resolution transmission electron microscopy (HRTEM) shows numerous bonding configurations between the Al atoms and the graphene lattice, some of which are not theoretically predicted. Furthermore, the produced AlG shows a CO2 capturability superior to those of other substitutionally doped graphenes.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesNano Researchcs
dc.relation.urihttps://doi.org/10.1007/s12274-021-3655-xcs
dc.rightsCopyright © 2021, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectaluminum-doped graphenecs
dc.subjectsingle-solid precursorcs
dc.subjectchemical vapor depositioncs
dc.subjectcarbon dioxide capturecs
dc.subjectenergy storagecs
dc.subjectcatalytic applicationscs
dc.titleDirect synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene familycs
dc.typearticlecs
dc.identifier.doi10.1007/s12274-021-3655-x
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue2cs
dc.description.lastpage1318cs
dc.description.firstpage1310cs
dc.identifier.wos000678455000001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam