dc.contributor.author | Li, Jian | |
dc.contributor.author | Liang, Xianjuan | |
dc.contributor.author | Oprocha, Piotr | |
dc.date.accessioned | 2022-05-04T08:35:02Z | |
dc.date.available | 2022-05-04T08:35:02Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Proceedings of the American Mathematical Society. 2021, vol. 149, issue 11, p. 4757-4770. | cs |
dc.identifier.issn | 0002-9939 | |
dc.identifier.issn | 1088-6826 | |
dc.identifier.uri | http://hdl.handle.net/10084/146107 | |
dc.description.abstract | We show that graph map with zero topological entropy is Li-Yorke chaotic if and only if it has an NS-pair (a pair of non-separable points containing in a same solenoidal omega-limit set), and a non-diagonal pair is an NS-pair if and only if it is an IN-pair if and only if it is an IT-pair. This completes characterization of zero topological sequence entropy for graph maps. | cs |
dc.language.iso | en | cs |
dc.publisher | American Mathematical Society | cs |
dc.relation.ispartofseries | Proceedings of the American Mathematical Society | cs |
dc.relation.uri | https://doi.org/10.1090/proc/15578 | cs |
dc.rights | © Copyright 2021 American Mathematical Society | cs |
dc.subject | graph map | cs |
dc.subject | topological entropy | cs |
dc.subject | topological sequence entropy | cs |
dc.subject | tameness | cs |
dc.subject | Li-Yorke chaos | cs |
dc.subject | non-separable points | cs |
dc.subject | IN-pair | cs |
dc.subject | IT-pair | cs |
dc.title | Graph maps with zero topological entropy and sequence entropy pairs | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1090/proc/15578 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 149 | cs |
dc.description.issue | 11 | cs |
dc.description.lastpage | 4770 | cs |
dc.description.firstpage | 4757 | cs |
dc.identifier.wos | 000695492700020 | |