Zobrazit minimální záznam

dc.contributor.authorLi, Jian
dc.contributor.authorLiang, Xianjuan
dc.contributor.authorOprocha, Piotr
dc.date.accessioned2022-05-04T08:35:02Z
dc.date.available2022-05-04T08:35:02Z
dc.date.issued2021
dc.identifier.citationProceedings of the American Mathematical Society. 2021, vol. 149, issue 11, p. 4757-4770.cs
dc.identifier.issn0002-9939
dc.identifier.issn1088-6826
dc.identifier.urihttp://hdl.handle.net/10084/146107
dc.description.abstractWe show that graph map with zero topological entropy is Li-Yorke chaotic if and only if it has an NS-pair (a pair of non-separable points containing in a same solenoidal omega-limit set), and a non-diagonal pair is an NS-pair if and only if it is an IN-pair if and only if it is an IT-pair. This completes characterization of zero topological sequence entropy for graph maps.cs
dc.language.isoencs
dc.publisherAmerican Mathematical Societycs
dc.relation.ispartofseriesProceedings of the American Mathematical Societycs
dc.relation.urihttps://doi.org/10.1090/proc/15578cs
dc.rights© Copyright 2021 American Mathematical Societycs
dc.subjectgraph mapcs
dc.subjecttopological entropycs
dc.subjecttopological sequence entropycs
dc.subjecttamenesscs
dc.subjectLi-Yorke chaoscs
dc.subjectnon-separable pointscs
dc.subjectIN-paircs
dc.subjectIT-paircs
dc.titleGraph maps with zero topological entropy and sequence entropy pairscs
dc.typearticlecs
dc.identifier.doi10.1090/proc/15578
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume149cs
dc.description.issue11cs
dc.description.lastpage4770cs
dc.description.firstpage4757cs
dc.identifier.wos000695492700020


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam