Zobrazit minimální záznam

dc.contributor.authorKouaissah, Noureddine
dc.contributor.authorOrtobelli, Sergio Lozza
dc.contributor.authorJebabli, Ikram
dc.date.accessioned2022-05-04T09:37:05Z
dc.date.available2022-05-04T09:37:05Z
dc.date.issued2021
dc.identifier.citationComputational Economics. 2021.cs
dc.identifier.issn0927-7099
dc.identifier.issn1572-9974
dc.identifier.urihttp://hdl.handle.net/10084/146110
dc.description.abstractThis paper investigates the implications for portfolio theory of using multivariate semiparametric estimators and a copula-based approach, especially when the number of risky assets becomes substantial. Parametric, nonparametric, and semiparametric regression methods are compared to approximate their returns in large-scale portfolio selection problems. Semiparametric regression models are used to prove that, under certain assumptions, the variability of the errors decreases as the number of factors increases. Moreover, a copula principal component analysis (PCA)-based approach is proposed, and its superiority to the classical Pearson PCA approach is demonstrated. Empirical analyses validate the suggested approaches and evaluate the impact of different approximation methods on portfolio selection problems. Here, the ex-ante sample paths of several portfolio strategies aiming to maximize portfolio wealth using either reward-risk or drawdown-based performance measures are compared. The results show that the proposed methodologies outperform the traditional approach for out-of-sample portfolios, especially when the dependence structure is represented by the Pearson linear correlation.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesComputational Economicscs
dc.relation.urihttps://doi.org/10.1007/s10614-021-10167-wcs
dc.rightsCopyright © 2021, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Naturecs
dc.subjectlarge-scale portfolio selectioncs
dc.subjectsemiparametric regressioncs
dc.subjectcopulascs
dc.subjectreturn approximationcs
dc.subjectperformance measurescs
dc.titlePortfolio selection using multivariate semiparametric estimators and a copula PCA-based approachcs
dc.typearticlecs
dc.identifier.doi10.1007/s10614-021-10167-w
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000693705500002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam