Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorBrzobohatý, Tomáš
dc.contributor.authorVlach, Oldřich
dc.date.accessioned2022-05-10T10:46:25Z
dc.date.available2022-05-10T10:46:25Z
dc.date.issued2021
dc.identifier.citationJournal of Numerical Mathematics. 2021, vol. 29, issue 4, p. 289-306.cs
dc.identifier.issn1570-2820
dc.identifier.issn1569-3953
dc.identifier.urihttp://hdl.handle.net/10084/146136
dc.description.abstractBounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of 'floating' clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m x m x m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.cs
dc.language.isoencs
dc.publisherDe Gruytercs
dc.relation.ispartofseriesJournal of Numerical Mathematicscs
dc.relation.urihttps://doi.org/10.1515/jnma-2020-0048cs
dc.rights© 2021 Walter de Gruyter GmbH, Berlin/Bostoncs
dc.subjectSchur complementcs
dc.subjectbounds on spectrumcs
dc.subjecthybrid FETIcs
dc.titleSchur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problemscs
dc.typearticlecs
dc.identifier.doi10.1515/jnma-2020-0048
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume29cs
dc.description.issue4cs
dc.description.lastpage306cs
dc.description.firstpage289cs
dc.identifier.wos000730400000002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam