Zobrazit minimální záznam

dc.contributor.authorMajumder, Mandira
dc.contributor.authorSaini, Haneesh
dc.contributor.authorDědek, Ivan
dc.contributor.authorSchneemann, Andreas
dc.contributor.authorChodankar, Nilesh R.
dc.contributor.authorRamarao, Viswanatha
dc.contributor.authorSantosh, Mysore Sridhar
dc.contributor.authorNanjundan, Ashok Kumar
dc.contributor.authorKment, Štěpán
dc.contributor.authorDubal, Deepak
dc.contributor.authorOtyepka, Michal
dc.contributor.authorZbořil, Radek
dc.contributor.authorJayaramulu, Kolleboyina
dc.date.accessioned2022-05-11T07:27:10Z
dc.date.available2022-05-11T07:27:10Z
dc.date.issued2021
dc.identifier.citationACS Nano. 2021, vol. 15, issue 11, p. 17275-17298.cs
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/10084/146143
dc.description.abstractThe conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N-2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Nanocs
dc.relation.urihttps://doi.org/10.1021/acsnano.1c08455cs
dc.rightsCopyright © 2021, American Chemical Societycs
dc.subjectgraphenecs
dc.subjectnitrogen reduction reaction (NRR)cs
dc.subjectelectrocatalystcs
dc.subjectdefectscs
dc.subjectdopingcs
dc.subjecthybridcs
dc.subjectgraphene derivativecs
dc.subjectmachine learningcs
dc.titleRational design of graphene derivatives for electrochemical reduction of nitrogen to ammoniacs
dc.typearticlecs
dc.identifier.doi10.1021/acsnano.1c08455
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue11cs
dc.description.lastpage17298cs
dc.description.firstpage17275cs
dc.identifier.wos000747115200016


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam