An optimized beuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams
dc.contributor.author | Kumar, Aman | |
dc.contributor.author | Arora, Harish Chandra | |
dc.contributor.author | Mohammed, Mazin Abed | |
dc.contributor.author | Kumar, Krishna | |
dc.contributor.author | Nedoma, Jan | |
dc.date.accessioned | 2022-05-13T09:15:14Z | |
dc.date.available | 2022-05-13T09:15:14Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | IEEE Access. 2022, vol. 10, p. 3790-3806. | cs |
dc.identifier.issn | 2169-3536 | |
dc.identifier.uri | http://hdl.handle.net/10084/146167 | |
dc.description.abstract | Over the world, there is growing worry about the corrosion of reinforced concrete structures. Structure repair, rehabilitation, replacement, and new structures all require cost-effective and long-lasting technologies. Fiber Reinforced Polymer (FRP) has been widely employed in both retrofitting existing structures and building new ones. Due to its varied qualities in reinforced concrete and masonry constructions as a repair composite material, FRP have seen a rise in use over the last decade. This material have several advantages such as high stiffness-to-weight and strength-to-weight ratios, light weight, possibly high longevity, and relative ease of usage in the field. Among all the parameters the bond between concrete and FRP composite play an important role in the strengthening of structures. However, the bond behaviour of the FRP-concrete interface is complex, with several failure modes, making the bond strength difficult to forecast, resulting in the FRP strengthened concrete structure. To overcome such kind of issues machine learning models are sufficient to forecast the bond strength of FRP-concrete. In this article Artificial Neural Network (ANN), optimized Artificial Bee Colony (ABC)-ANN and Gaussian Process Regression (GPR) algorithms are deployed to predict the bond strength. The R-value of ABC-ANN and GPR models are 0.9514 and 0.9618 respectively. This research aids researchers in estimating bond strength in less time, at a lower cost, and with less experimental work. | cs |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartofseries | IEEE Access | cs |
dc.relation.uri | https://doi.org/10.1109/ACCESS.2021.3140046 | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | ABC-ANN | cs |
dc.subject | ANN | cs |
dc.subject | bond strength | cs |
dc.subject | FRP-concrete bond | cs |
dc.subject | FRP | cs |
dc.subject | machine leaning | cs |
dc.title | An optimized beuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1109/ACCESS.2021.3140046 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 10 | cs |
dc.description.lastpage | 3806 | cs |
dc.description.firstpage | 3790 | cs |
dc.identifier.wos | 000742699400001 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440) [369]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry telekomunikačních technologií (440) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.