Zobrazit minimální záznam

dc.contributor.authorKumar, Aman
dc.contributor.authorArora, Harish Chandra
dc.contributor.authorMohammed, Mazin Abed
dc.contributor.authorKumar, Krishna
dc.contributor.authorNedoma, Jan
dc.date.accessioned2022-05-13T09:15:14Z
dc.date.available2022-05-13T09:15:14Z
dc.date.issued2022
dc.identifier.citationIEEE Access. 2022, vol. 10, p. 3790-3806.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/146167
dc.description.abstractOver the world, there is growing worry about the corrosion of reinforced concrete structures. Structure repair, rehabilitation, replacement, and new structures all require cost-effective and long-lasting technologies. Fiber Reinforced Polymer (FRP) has been widely employed in both retrofitting existing structures and building new ones. Due to its varied qualities in reinforced concrete and masonry constructions as a repair composite material, FRP have seen a rise in use over the last decade. This material have several advantages such as high stiffness-to-weight and strength-to-weight ratios, light weight, possibly high longevity, and relative ease of usage in the field. Among all the parameters the bond between concrete and FRP composite play an important role in the strengthening of structures. However, the bond behaviour of the FRP-concrete interface is complex, with several failure modes, making the bond strength difficult to forecast, resulting in the FRP strengthened concrete structure. To overcome such kind of issues machine learning models are sufficient to forecast the bond strength of FRP-concrete. In this article Artificial Neural Network (ANN), optimized Artificial Bee Colony (ABC)-ANN and Gaussian Process Regression (GPR) algorithms are deployed to predict the bond strength. The R-value of ABC-ANN and GPR models are 0.9514 and 0.9618 respectively. This research aids researchers in estimating bond strength in less time, at a lower cost, and with less experimental work.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2021.3140046cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectABC-ANNcs
dc.subjectANNcs
dc.subjectbond strengthcs
dc.subjectFRP-concrete bondcs
dc.subjectFRPcs
dc.subjectmachine leaningcs
dc.titleAn optimized beuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beamscs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2021.3140046
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.lastpage3806cs
dc.description.firstpage3790cs
dc.identifier.wos000742699400001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/