Zobrazit minimální záznam

dc.contributor.authorPrauzek, Michal
dc.contributor.authorPaterová, Tereza
dc.contributor.authorKonečný, Jaromír
dc.contributor.authorMartinek, Radek
dc.date.accessioned2022-05-16T09:57:09Z
dc.date.available2022-05-16T09:57:09Z
dc.date.issued2022
dc.identifier.citationComputers, Materials & Continua. 2022, vol. 70, issue 2, p. 2601-2618.cs
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.urihttp://hdl.handle.net/10084/146173
dc.description.abstractNowadays, there is a significant need for maintenance free modern Internet of things (IoT) devices which can monitor an environment. IoT devices such as these are mobile embedded devices which provide data to the internet via Low Power Wide Area Network (LPWAN). LPWAN is a promising communications technology which allows machine to machine (M2M) communication and is suitable for small mobile embedded devices. The paper presents a novel data-driven self-learning (DDSL) controller algorithm which is dedicated to controlling small mobile maintenance-free embedded IoT devices. The DDSL algorithm is based on a modified Q-learning algorithm which allows energy efficient data-driven behavior of mobile embedded IoT devices. The aim of the DDSL algorithm is to dynamically set operation duty cycles according to the estimation of future collected data values, leading to effective operation of power-aware systems. The presented novel solution was tested on a historical data set and compared with a fixed duty cycle reference algorithm. The root mean square error (RMSE) and measurements parameters considered for the DDSL algorithm were compared to a reference algorithm and two independent criteria (the performance score parameter and normalized geometric distance) were used for overall evaluation and comparison. The experiments showed that the novel DDSL method reaches significantly lower RMSE while the number of transmitted data count is less than or equal to the fixed duty cycle algorithm. The overall criteria performance score is 40% higher than the reference algorithm base on static confirmation settings.cs
dc.language.isoencs
dc.publisherTech Science Presscs
dc.relation.ispartofseriesComputers, Materials & Continuacs
dc.relation.urihttps://doi.org/10.32604/cmc.2022.019705cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject5G and beyond wirelesscs
dc.subjectIoTcs
dc.subjectLPWANcs
dc.subjectM2Mcs
dc.subjectQ-learningcs
dc.titleData-driven self-learning controller for power-aware mobile monitoring IoT devicescs
dc.typearticlecs
dc.identifier.doi10.32604/cmc.2022.019705
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume70cs
dc.description.issue2cs
dc.description.lastpage2618cs
dc.description.firstpage2601cs
dc.identifier.wos000705060700028


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/