Zobrazit minimální záznam

dc.contributor.authorVondrák, Jaroslav
dc.contributor.authorPenhaker, Marek
dc.contributor.authorJurek, František
dc.date.accessioned2022-06-14T06:35:30Z
dc.date.available2022-06-14T06:35:30Z
dc.date.issued2022
dc.identifier.citationAlexandria Engineering Journal. 2022, vol. 61, issue 5, p. 3475-3485.cs
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.urihttp://hdl.handle.net/10084/146275
dc.description.abstractVectorcardiography (VCG) as an alternative form of 12-lead ECG is another method of measuring the electrical activity of the heart. The use of vectorcardiography in clinical practice is not common, but VCG leads can be derived from 12-lead ECG. VCG has proven to be a useful and more accurate tool for diagnosing various heart diseases within automated detection. This paper presents the application of four transformation methods namely: Kors regression, IDT, QLSV and Quasi-Orthogonal transformation to obtain a derived VCG. A total of 20 physiological and 20 records with the diagnosis of myocardial infarction were used. For physiological records, the Kors regression method achieved the best results in leads X and Y with relative deviation <1%, correlation and percentage similarity >99%. In lead Z, the QLSV method achieved the most accurate results with relative deviation <1%, correlation >98% and percentage similarity >99%. For pathological records, the most accurate method in all leads was Kors regression with relative deviation <2.2%, correlation >93% and percentage similarity >97%. From these results, there is the possibility of creating a new transformation method from the existing ones in order to obtain a more accurate transformation.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAlexandria Engineering Journalcs
dc.relation.urihttps://doi.org/10.1016/j.aej.2021.08.068cs
dc.rights© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjecttransformation methodscs
dc.subjectVCGcs
dc.subjecttransformation matrixcs
dc.subjectvectorcardiographycs
dc.subjectmyocardial infarctioncs
dc.titleSelected transformation methods and their comparison for VCG leads derivingcs
dc.typearticlecs
dc.identifier.doi10.1016/j.aej.2021.08.068
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume61cs
dc.description.issue5cs
dc.description.lastpage3485cs
dc.description.firstpage3475cs
dc.identifier.wos000768904400010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.