Multiple benefit thresholds problem in online social networks: An algorithmic approach
dc.contributor.author | Pham, Phuong N. H. | |
dc.contributor.author | Nguyen, Bich-Ngan T. | |
dc.contributor.author | Co, Quy T. N. | |
dc.contributor.author | Snášel, Václav | |
dc.date.accessioned | 2022-06-17T07:55:37Z | |
dc.date.available | 2022-06-17T07:55:37Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Mathematics. 2022, vol. 10, issue 6, art. no. 876. | cs |
dc.identifier.issn | 2227-7390 | |
dc.identifier.uri | http://hdl.handle.net/10084/146284 | |
dc.description.abstract | An important problem in the context of viral marketing in social networks is the Influence Threshold (IT) problem, which aims at finding some users (referred to as a seed set) to begin the process of disseminating their product's information so that the benefit gained exceeds a predetermined threshold. Even though, marketing strategies exhibit different in several realistic scenarios due to market dependence or budget constraints. As a consequence, picking a seed set for a specific threshold is not enough to come up with an effective solution. To address the disadvantages of previous works with a new approach, we study the Multiple Benefit Thresholds (MBT), a generalized version of the IT problem, as a result of this phenomenon. Given a social network that is subjected to information distribution and a set of thresholds, T = {T-1, T-2, ..., T-k}, Ti > 0, the issue aims to seek the seed sets S-1, S-2, ..., Sk with the lowest possible cost so that the benefit achieved from the influence process is at the very least T-1, T-2, ..., T-k, respectively. The main challenges of this problem are a #NP-hard problem and the estimation of the objective function #P-Hard under traditional information propagation models. In addition, adapting the exist algorithms many times to different thresholds can lead to large computational costs. To address the abovementioned challenges, we introduced Efficient Sampling for Selecting Multiple Seed Sets, an efficient technique with theoretical guarantees (ESSM). At the core of our algorithm, we developed a novel algorithmic framework that (1) can use the solution to a smaller threshold to find that of larger ones and (2) can leverage existing samples with the current solution to find that of larger ones. The extensive experiments on several real social networks were conducted in order to show the effectiveness and performance of our algorithm compared with current ones. The results indicated that our algorithm outperformed other state-of-the-art ones in terms of both the total cost and running time. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Mathematics | cs |
dc.relation.uri | https://doi.org/10.3390/math10060876 | cs |
dc.rights | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | social network | cs |
dc.subject | viral marketing | cs |
dc.subject | information diffusion | cs |
dc.subject | approximation algorithm | cs |
dc.title | Multiple benefit thresholds problem in online social networks: An algorithmic approach | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/math10060876 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 10 | cs |
dc.description.issue | 6 | cs |
dc.description.firstpage | art. no. 876 | cs |
dc.identifier.wos | 000778250100001 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.