Zobrazit minimální záznam

dc.contributor.authorNovák, Vlastimil
dc.contributor.authorŘeháčková, Lenka
dc.contributor.authorVáňová, Petra
dc.contributor.authorSniegoň, Michal
dc.contributor.authorMatýsek, Dalibor
dc.contributor.authorKonečná, Kateřina
dc.contributor.authorSmetana, Bedřich
dc.contributor.authorRosypalová, Silvie
dc.contributor.authorTkadlečková, Markéta
dc.contributor.authorDrozdová, Ľubomíra
dc.contributor.authorKlus, Petr
dc.date.accessioned2022-06-21T10:33:10Z
dc.date.available2022-06-21T10:33:10Z
dc.date.issued2022
dc.identifier.citationMaterials. 2022, vol. 15, issue 4, art. no. 1592.cs
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/10084/146298
dc.description.abstractThis work aims to assess the effect of an oxygen content graded in minimal quantities, on the order of hundreds of ppms, on the determination of surface tension of low-alloy FeCOCr and FeCONi steels in contact with a corundum substrate. Oxygen, as a surface-active element, was segregated at the surface where it interacted with the major components of the alloys, leading to a reduction in surface tension. The sessile drop method was used for wetting tests in the temperature range from steel liquidus temperatures to 1600 degrees C under nonoxidizing conditions. The effect of oxygen on surface tension and wetting angles was verified by statistical analysis using the Kruskal-Wallis test, which supported the results stating that the values of these quantities decreased with increasing oxygen content. Furthermore, liquidus temperatures, which are of practical importance, were determined by the optical and DTA methods and then compared with theoretically calculated temperature values. It turned out that the increased chromium content causes difficulties in determining surface tension up to 1550 degrees C due to the formation of a thin Cr2O3 layer. In addition, SEM and XRD analyses accompanied by calculations in the FactSage oxide database were performed to better understand the wetting mechanism.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMaterialscs
dc.relation.urihttps://doi.org/10.3390/ma15041592cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectlow-alloy steelcs
dc.subjectoxygencs
dc.subjectsurface tensioncs
dc.subjectwetting anglecs
dc.subjectliquidus temperaturecs
dc.subjectphase interfacecs
dc.titleThe effect of trace oxygen addition on the interface behavior of low-alloy steelcs
dc.typearticlecs
dc.identifier.doi10.3390/ma15041592
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue4cs
dc.description.firstpageart. no. 1592cs
dc.identifier.wos000774169500001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.