Zobrazit minimální záznam

dc.contributor.authorRajendran, Shankar
dc.contributor.authorGanesh, N.
dc.contributor.authorČep, Robert
dc.contributor.authorNarayanan, R. C.
dc.contributor.authorPal, Subham
dc.contributor.authorKalita, Kanak
dc.date.accessioned2022-06-21T11:07:31Z
dc.date.available2022-06-21T11:07:31Z
dc.date.issued2022
dc.identifier.citationProcesses. 2022, vol. 10, issue 2, art. no. 197.cs
dc.identifier.issn2227-9717
dc.identifier.urihttp://hdl.handle.net/10084/146300
dc.description.abstractIn recent years, several high-performance nature-inspired metaheuristic algorithms have been proposed. It is important to study and compare the convergence, computational burden and statistical significance of these metaheuristics to aid future developments. This study focuses on six recent metaheuristics, namely, ant lion optimization (ALO), arithmetic optimization algorithm (AOA), dragonfly algorithm (DA), grey wolf optimizer (GWO), salp swarm algorithm (SSA) and whale optimization algorithm (WOA). Optimization of an industrial machining application is tackled in this paper. The optimal machining parameters (peak current, duty factor, wire tension and water pressure) of WEDM are predicted using the six aforementioned metaheuristics. The objective functions of the optimization study are to maximize the material removal rate (MRR) and minimize the wear ratio (WR) and surface roughness (SR). All of the current algorithms have been seen to surpass existing results, thereby indicating their superiority over conventional optimization algorithms.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesProcessescs
dc.relation.urihttps://doi.org/10.3390/pr10020197cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectoptimizationcs
dc.subjectnon-traditional algorithmscs
dc.subjectprocess optimizationcs
dc.subjectprocess parameterscs
dc.subjectalgorithmscs
dc.titleA conceptual comparison of six nature-inspired metaheuristic algorithms in process optimizationcs
dc.typearticlecs
dc.identifier.doi10.3390/pr10020197
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue2cs
dc.description.firstpageart. no. 197cs
dc.identifier.wos000778142900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.